Wildtype sunflower (Helianthus annuus L.) seeds are a rich source of alpha-tocopherol (vitamin E). The g = Tph(2) mutation disrupts the synthesis of alpha-tocopherol, enhances the synthesis of gamma-tocopherol, and was predicted to knock out a gamma-tocopherol methyltransferase (gamma-TMT) necessary for the synthesis of alpha-tocopherol in sunflower seeds--wildtype (g(+) g(+)) lines accumulated > 90% alpha-tocopherol, whereas mutant (g g) lines accumulated > 90% gamma-tocopherol. We identified and isolated two gamma-TMT paralogs (gamma-TMT-1 and gamma-TMT-2). Both mapped to linkage group 8, cosegregated with the g locus, and were transcribed in developing seeds of wildtype lines. The g mutation greatly decreased gamma-TMT-1 transcription, caused alternative splicing of gamma-TMT-1, disrupted gamma-TMT-2 transcription, and knocked out one of two transcription initiation sites identified in the wildtype; gamma-TMT transcription was 36 to 51-fold greater in developing seeds of wildtype (g(+) g(+)) than mutant (g g) lines. F(2) populations (B109 x LG24 and R112 x LG24) developed for mapping the g locus segregated for a previously unidentified locus (d). B109, R112, and LG24 were homozygous for a null mutation (m = Tph(1)) in MT-1, one of two 2-methyl-6-phytyl-1,4-benzoquinone/2-methyl-6-solanyl-1,4-benzoquinone methyltransferase (MPBQ/MSBQ-MT) paralogs identified in sunflower. The d mutations segregating in B109 x LG24 and R112 x LG24 were allelic to a cryptic mutation identified in the other MPBQ/MSBQ-MT paralog (MT-2) and disrupted the synthesis of alpha- and gamma-tocopherol in F(2) progeny carrying m or g mutations--m m g(+) g(+) d d homozygotes accumulated 41.5% alpha- and 58.5% beta-T, whereas m m g g d d homozygotes accumulated 58.1% gamma- and 41.9% delta-T. MT-2 cosegregated with d and mapped to linkage group 4. Hence, novel tocopherol profiles are produced in sunflower seed oil by three non-allelic epistatically interacting methyltransferase mutations.
The m (Tph(1)) mutation partially disrupts the synthesis of alpha-tocopherol (vitamin E) in sunflower (Helianthus annuus L.) seeds and was predicted to disrupt a methyltransferase activity necessary for the synthesis of alpha- and gamma-tocopherol. We identified and isolated two 2-methyl-6-phytyl-1,4-benzoquinone/2-methyl-6-solanyl-1,4-benzoquinone methyltransferase (MPBQ/MSBQ-MT) paralogs from sunflower (MT-1 and MT-2), resequenced MT-1 and MT-2 alleles from wildtype (m(+) m(+)) and mutant (m m) inbred lines, identified m as a non-lethal knockout mutation of MT-1 caused by the insertion of a 5.2 kb Ty3/gypsy-like retrotransposon in exon 1, and uncovered a cryptic codominant mutation (d) in a wildtype x mutant F(2) population predicted to be segregating for the m mutation only. MT-1 and m cosegregated and mapped to linkage group 1 and MT-1 was not transcribed in mutant homozygotes (m m). The m locus was epistatic to the d locus--the d locus had no effect in m(+) m(+) and m(+) m individuals, but significantly increased beta-tocopherol percentages in m m individuals. MT-2 and d cosegregated, MT-2 alleles isolated from mutant homozygotes (d d) carried a 30 bp insertion at the start of the 5'-UTR, and MT-2 was more strongly transcribed in seeds and leaves of wildtype (d(+) d(+)) than mutant (d d) homozygotes (transcripts were 2.2- to 5.0-fold more abundant in the former than the latter). The double mutant (m m d d) was non-lethal and produced 24-45% alpha- and 55-74% beta-tocopherol (the wildtype produced 96% alpha- and 4% beta-tocopherol). MT-2 compensated for the loss of the MT-1 function, and the MT-2 mutation profoundly affected the synthesis of tocopherols without adversely affecting the synthesis of plastoquinone crucial for normal plant growth and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.