The upper respiratory tract (URT) hosts a complex microbial community of commensal microorganisms and potential pathogens. Analyzing the composition and nature of the healthy URT microbiota and how it changes over time will contribute to a better understanding of the pathogenesis of pneumonia and otitis. A longitudinal study was conducted including 174 Holstein calves that were divided in four groups: healthy calves, calves diagnosed with pneumonia, otitis or both diseases. Deep pharyngeal swabs were collected on days 3, 14, 28, and 35 of life, and next-generation sequencing of the 16S rRNA gene as well as quantitative PCR was performed. The URT of Holstein dairy calves aged 3 to 35 days revealed to host a highly diverse bacterial community. The relative abundances of the bacterial genera Mannheimia, Moraxella, and Mycoplasma were significantly higher in diseased versus healthy animals, and the total bacterial load of newborn calves at day 3 was higher for animals that developed pneumonia than for healthy animals. Our results corroborate the existing knowledge that species of Mannheimia and Mycoplasma are important pathogens in pneumonia and otitis. Furthermore, they suggest that species of Moraxella can potentially cause the same disorders (pneumonia and otitis), and that high neonatal bacterial load is a key contributor to the development of pneumonia.
In an effort to characterize colostrum microbial diversity and its potential associations with early-lactation clinical mastitis, we used high-throughput sequencing of the 16S rRNA gene to investigate the bovine colostrum microbiome. A prospective observational study was conducted that included 70 Holstein cows; colostrum samples were collected from all 4 mammary gland quarters. Colostrum samples were categorized according to whether the quarter was diagnosed (CMC) or not diagnosed (NCMC) with clinical mastitis during the first 30 d postpartum. Colostrum samples were dominated by Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Fusobacteria, and Tenericutes phyla, with the 6 most common taxa [order (o), family (f), and genus (g)] being g_Staphylococcus, g_Prevotella, f_Ruminococcaceae, o_Bacteroidales, o_Clostridiales, and g_Pseudomonas. The colostrum microbiota of primiparous cows was significantly richer (higher number of bacterial species) than that of multiparous cows, and differences in colostrum taxonomic structure between parities were also observed. The microbial community of NCMC samples of primiparous cows was significantly more diverse than that of CMC samples, and the relative abundances of the Tenericutes and Fusobacteria phyla as well as the Mycoplasma and Fusobacterium genera were significantly higher in NCMC than in CMC samples of primiparous cows. The colostrum core microbiome, defined as the bacterial taxa common to all colostrum samples examined, was composed of 20 taxa and included bacterial genera already known to be associated with mastitis (e.g., Staphylococcus, Mycoplasma, and Streptococcus spp.). Our results indicate that the colostrum microbiome of primiparous cows differs from that of multiparous cows, and it harbors some diversity and taxonomic markers of mammary gland health specific to primiparous cows only.
Metritis is a uterine disease that affects 10 to 30% of all lactating dairy cows and has detrimental effects on reproductive performance, milk production, and survival. Data regarding the identity and abundance of bacterial genes governing traits such as virulence, antibiotic resistance, and stress responses could enable identification of previously unknown agents that play a role in metritis pathogenesis. Moreover, such knowledge could lead to the development of improved treatments or preventive methods. Therefore, the objectives of this study were to characterize the uterine microbial population and to differentiate, for the first time, the microbial functional diversity in cows with metritis versus healthy cows. In addition, we aimed to identify relationships between microbial genes and postpartum uterine health. Uterine swabs were collected from 24 cows within 3 to 12 d in milk; 12 cows were diagnosed with metritis and the other 12 were healthy. Metritis was defined as a watery, reddish or brownish uterine discharge having a fetid smell, and rectal temperature greater than 39.5°C. Cows with a clear and viscous uterine discharge, not fetid or mucopurulent, were classified as healthy. Microbial metagenomic DNA from uterine swab samples was subjected to whole-genome shotgun sequencing on the Illumina MiSeq platform (Illumina Inc., San Diego, CA). The MG-RAST server (metagenomic rapid annotations using subsystems technology; http://metagenomics.anl.gov/) and STAMP software (http://kiwi.cs.dal.ca/Software/STAMP) were used to detect statistically significant differences in the abundance of taxonomic and functional features between the uterine microbial metagenomes of metritic and healthy cows. Our results showed an increased abundance of Fusobacteria and Bacteroidetes in metritic cows, confirming the potential role of those 2 taxa in the pathogenesis of metritis. The MG-RAST analysis revealed a significantly higher abundance of genes for protein transport across the cytoplasmic membrane and type VI bacterial secretion systems in the metritic microbiota. Additionally, genes coding for resistance to acid stress were exclusive to the metritis microbiota, suggesting that microbial resistance to acid stress is important for microbial survival in the infected uterus. On the other hand, genes coding for adhesion molecules, bacteriocins, and antibacterial peptides were significantly associated with the uterine microbiota of healthy cows, as was tolerance to colicin E2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.