In vertebrates with mutations in the Notch cell-cell communication pathway, segmentation fails: the boundaries demarcating somites, the segments of the embryonic body axis, are absent or irregular. This phenotype has prompted many investigations, but the role of Notch signalling in somitogenesis remains mysterious. Somite patterning is thought to be governed by a "clock-and-wavefront" mechanism: a biochemical oscillator (the segmentation clock) operates in the cells of the presomitic mesoderm, the immature tissue from which the somites are sequentially produced, and a wavefront of maturation sweeps back through this tissue, arresting oscillation and initiating somite differentiation. Cells arrested in different phases of their cycle express different genes, defining the spatially periodic pattern of somites and controlling the physical process of segmentation. Notch signalling, one might think, must be necessary for oscillation, or to organize subsequent events that create the somite boundaries. Here we analyse a set of zebrafish mutants and arrive at a different interpretation: the essential function of Notch signalling in somite segmentation is to keep the oscillations of neighbouring presomitic mesoderm cells synchronized.
The zebrafish provides an important model for vertebrate inner ear development. The otic placode becomes visible at approximately 16 hours (at 28.5 degrees C) and forms a vesicle with a lumen by cavitation at approximately 18 hours. Two otoliths appear in the lumen by 19.5 hours, and at about 24 hours the first sensory hair cells are seen, grouped in two small patches, one beneath each otolith, corresponding to future maculae. Staining with fluorescent phalloidin reveals 10-20 hair cells in each macula by 42 hours; between 3 days and 7 days the numbers grow to approximately 80 per macula. Neurons of the statoacoustic ganglion are first visible by staining with HNK-1 antibody at about 24 hours. Serial sections and time-lapse films show that the neuronal precursors originate by delamination from the ventral face of the otocyst; the peak period of delamination is from 22 hours to 30 hours. The system of semicircular canals forms between 42 hours and 72 hours by outgrowth of protrusions from the walls of the otocyst to form pillars of tissue spanning the lumen. Three further clusters of hair cells also become visible in this period, forming the three cristae. Thus, by the end of the first week, all key components of the ear are present. Subsequent growth produces thousands more hair cells; additional neurons probably derive from proliferation of neuronal precursors within the ganglion. Although the timetable is species-specific, the principles of inner ear development in the zebrafish seem to be the same as in other vertebrates.
Four genes - deltaA, deltaB, deltaC and deltaD - coding for homologues of the Notch ligand Delta have been discovered in zebrafish (Haddon et al., 1998b). We report here the cDNA sequence and expression pattern of deltaC. Its closest relatives are deltaB and Xenopus X-Delta-2. Unlike deltaA, deltaB, and deltaD, deltaC is not expressed in the majority of nascent primary neurons; but it is strongly expressed in the early retina, where it precedes other delta genes. It is also expressed in cranial ganglia, in sensory epithelia including ear and lateral line, and in scattered epidermal cells. In the mesoderm, expression is visible by 50% epiboly; it is seen subsequently in the tail bud, in stripes in the presomitic mesoderm and in the posterior half of each somite. There is expression also in notochord, blood vessels and pronephros.
Drosophila fringe and its homologues in vertebrates code for glycosyltransferases that modify Notch, altering the sensitivity of this receptor protein to its ligands Delta and Serrate and, thereby, playing an essential part in the demarcation of tissue boundaries. We describe the isolation and characterization of three zebrafish (Danio rerio) fringe homologues: lunatic fringe (lfng), radical fringe (rfng), and manic fringe (mfng). In addition to the sites previously described (Prince et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.