The synthesis of nitronyl and imino nitroxides has been reexamined with the aim of both increasing yields and of offering opportunities for new structures. The conditions for the formation of 2,3-bis(hydroxyamino)-2,3-dimethylbutane, the key intermediate of Ullman's route, have been carefully studied, and a new procedure is proposed, which affords the free base in a very pure form and up to 60% yield. Full characterization of this intermediate including an X-ray crystal structure is presented. An alternative synthetic route through 2,3-diamino-2,3-dimethylbutane and the corresponding imidazolidines which bypasses the delicate synthesis of the bis(hydroxyamino) compound is described. It is shown that 3-chloroperbenzoic acid is an effective oxidant for the transformation of adequately substituted imidazolidines into nitronyl nitroxides, which are obtained in high yield. An illustration of the potentialities of this new route, a new nitronyl nitroxide with two ethyl substituents in positions 4 and 5 of the imidazoline ring, is reported. The scope and limitations of the two routes are discussed.
Four isomerically pure octasubstituted zinc phthalocyanines with variations in the attachment atom and positions of the substituents were selected for a systematic investigation of the effect of the substitution pattern on their electronic and spectroscopic properties. Effects which were investigated are the position, the electron donating and withdrawing properties, and the donating force of the substituent. The results are discussed and interpreted based on theoretical and experimental determination of the orbital levels. This work allows us to highlight which substitution patterns are the most suitable considering different common applications of phthalocyanines.
The concept of octupolar molecules has considerably enlarged the engineering of second-order nonlinear optical materials by giving access to 2D and 3D architectures. However, if the archetype of octupolar symmetry is a cube with alternating donor and acceptor groups at the corners, no translation of this ideal structure into a real molecule has been realized to date. This may be achieved by designing a bis(phthalocyaninato)lutetium(III) double-decker complex with a crosswise ABAB phthalocyanine bearing alternating electron-donor and electron-acceptor groups. In this communication, we present the first step toward this goal with the synthesis, crystal structure determination, and measurement of the molecular first-order hyperpolarizability β by harmonic light diffusion, of an original lutetium(III) sandwich complex displaying the required ABAB-type alternation for one face of the cube. This structure is characterized by an intense absorption in the near-IR due to an intervalence transition and exhibits the highest quadratic hyperpolarizability ever reported for an octupolar molecule, √<β(2)(HLS)> = 5750 × 10(-30) esu.
This review summarizes synthetic strategies for the preparation of asymmetric phthalocyanines and their analogues. Cross-condensation between two phthalonitrile components, crosscondensation between one phthalonitrile and one non-nitrile component, targeted synthesis of AABB-type compounds, the subphthalocyanine ring-expansion method, as well as postmodification approaches on pre-formed symmetric and asymmetric systems, are discussed. Methodologies for targeted preparation of specific types of asymmetric phthalocyanines and their analogues are also briefly overviewed.
The octupolar cube, a Td symmetry cube presenting alternating charges at its corners, is the generic point charge template of any octupolar molecule. So far, transposition into real molecular structures has yet to be achieved. We report here a first step toward the elaboration of fully cubic octupolar architectures. A series of octupolar bis(2,3,16,17-tetra(hexylthio)phthalocyaninato)lanthanide double-decker complexes [Pc2Ln], Ln = Nd (1), Eu (2), Dy (3), Y (4), and Lu (5), are described, whose original three-dimensional structures display the required alternation of ABAB type for one face of the cube and the delocalization between the two rings approximating to the electronic interaction along the edges of the cube. Synthesis, X-ray crystal structure, and study of the optical properties and of the first molecular hyperpolarizability β are reported. The size of the lanthanide (III) central ion modulates the ring-to-ring distance and the degree of coupling between the two phthalocyanine rings. As a consequence, the optical properties of these octupolar chromophores and in particular the strong near-infrared absorption due to the intervalence transition between the two rings also depend on the central lanthanide (III) ion. The first oxidized and reduced states of the complexes, while keeping a similar octupolar structure, display considerably changed optical properties compared to the neutral states. Second-order nonlinear properties were determined by nonpolarized harmonic light scattering in solution at 1907 nm. Exceptionally large dynamic molecular first hyperpolarizabilities √(<βHLS(2)>1907), among the highest ever reported, were found that showed a strong dependence on the number of 4f electrons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.