Initiation of RNA‐dependent DNA synthesis by retroviral reverse transcriptases is generally considered as unspecific. In the case of human immunodeficiency virus type 1 (HIV‐1), the natural primer is tRNA3Lys. We recently found evidence of complex interactions between tRNA3Lys and HIV‐1 RNA that may be involved in the priming process. In this study, we compare the ability of natural and unmodified synthetic tRNA3Lys and 18mer oligoribo‐ and oligodeoxyribonucleotides complementary to the viral primer binding site to initiate replication of HIV‐1 RNA using either homologous or heterologous reverse transcriptases. We show that HIV‐1 RNA, HIV‐1 reverse transcriptase and primer tRNA3Lys form a specific initiation complex that differs from the unspecific elongation complex formed when an oligodeoxyribonucleotide is used as primer. Modified nucleosides of tRNA3Lys are required for efficient initiation and transition to elongation. Transition from initiation to elongation, but not initiation of reverse transcription itself, is facilitated by extended primer‐template interactions. Elongation, but not initiation of reverse transcription, is inhibited by Mn2+, which further differentiates these two different functional states of reverse transcriptase. These results define initiation of reverse transcription as a target to block viral replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.