Eukaryotic cells contain several unconventional poly(A) polymerases in addition to the canonical enzymes responsible for the synthesis of poly(A) tails of nuclear messenger RNA precursors. The yeast protein Trf4p has been implicated in a quality control pathway that leads to the polyadenylation and subsequent exosome-mediated degradation of hypomethylated initiator tRNAMet (tRNAi
Met). Here we show that Trf4p is the catalytic subunit of a new poly(A) polymerase complex that contains Air1p or Air2p as potential RNA-binding subunits, as well as the putative RNA helicase Mtr4p. Comparison of native tRNAi
Met with its in vitro transcribed unmodified counterpart revealed that the unmodified RNA was preferentially polyadenylated by affinity-purified Trf4 complex from yeast, as well as by complexes reconstituted from recombinant components. These results and additional experiments with other tRNA substrates suggested that the Trf4 complex can discriminate between native tRNAs and molecules that are incorrectly folded. Moreover, the polyadenylation activity of the Trf4 complex stimulated the degradation of unmodified tRNAi
Met by nuclear exosome fractions in vitro. Degradation was most efficient when coupled to the polyadenylation activity of the Trf4 complex, indicating that the poly(A) tails serve as signals for the recruitment of the exosome. This polyadenylation-mediated RNA surveillance resembles the role of polyadenylation in bacterial RNA turnover.
The virion cores of the replication competent type 1 human immunodeficiency virus (HIV‐1), a retrovirus, contain and RNA genome associated with nucleocapsid (NC) and reverse transcriptase (RT p66/p51) molecules. In vitro reconstructions of these complexes with purified components show that NC is required for efficient annealing of the primer tRNALys,3. In the absence of NC, HIV‐1 RT is unable to retrotranscribe the viral RNA template from the tRNA primer. We demonstrate that the HIV‐1 RT p66/p51 specifically binds to its cognate primer tRNALys,3 even in the presence of a 100‐fold molar excess of other tRNAs. Cross‐linking analysis of this interaction locates the contact site to a region within the heavily modified anti‐codon domain of tRNALys,3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.