Polo-like kinases (Plks) play crucial roles in mitosis and cell division. Whereas lower eukaryotes typically contain a single Plk, mammalian cells express several closely related but functionally distinct Plks. We describe here a chemical genetic system in which a single Plk family member, Plk1, can be inactivated with high selectivity and temporal resolution by using an allele-specific, small-molecule inhibitor, as well as the application of this system to dissect Plk1's role in cytokinesis. To do this, we disrupted both copies of the PLK1 locus in human cells through homologous recombination and then reconstituted Plk1 activity by using either the wild-type kinase (Plk1 wt ) or a mutant version whose catalytic pocket has been enlarged to accommodate bulky purine analogs (Plk1 as ). When cultured in the presence of these analogs, Plk1 as cells accumulate in prometaphase with defects that parallel those found in PLK1 ⌬/⌬ cells. In addition, acute treatment of Plk1 as cells during anaphase prevents recruitment of both Plk1 itself and the Rho guanine nucleotide exchange factor (RhoGEF) Ect2 to the central spindle, abolishes RhoA GTPase localization to the equatorial cortex, and suppresses cleavage furrow formation and cell division. Our studies define and illuminate a late mitotic function of Plk1 that, although difficult or impossible to detect in Plk1-depleted cells, is readily revealed with chemical genetics.cell division ͉ Ect2 ͉ knockout ͉ mitosis
The cysteine protease separase triggers anaphase onset by cleaving chromosome-bound cohesin. In humans, separase also cleaves itself at multiple sites, but the biological significance of this reaction has been elusive. Here we show that preventing separase auto-cleavage, via targeted mutagenesis of the endogenous hSeparase locus in somatic cells, interferes with entry into and progression through mitosis. The initial delay in mitotic entry was not dependent on the G2 DNA damage checkpoint, but rather involved improper stabilization of the mitosis-inhibiting kinase Wee1. During M phase, cells deficient in separase auto-cleavage exhibited striking defects in spindle assembly and metaphase chromosome alignment, revealing an additional early mitotic function for separase. Both the G2 and M phase phenotypes could be recapitulated by separase RNA interference and corrected by re-expressing wild-type separase in trans. We conclude that separase auto-cleavage coordinates multiple aspects of the G2/M programme in human cells, thus contributing to the timing and efficiency of chromosome segregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.