The binding of two 5-substituted-l,3,4-thiadiazole-2-thione inhibitors to the matrix metalloproteinase stromelysin (MMP-3) have been characterized by protein crystallography. Both inhibitors coordinate to the catalytic zinc cation via an exocyclic sulfur and lay in an unusual position across the unprimed (Pl-P3) side of the proteinase active site. Nitrogen atoms in the thiadiazole moiety make specific hydrogen bond interactions with enzyme structural elements that are conserved across all enzymes in the matrix metalloproteinase class. Strong hydrophobic interactions between the inhibitors and the side chain of tyrosine-I55 appear to be responsible for the very high selectivity of these inhibitors for stromelysin. In these enzymehnhibitor complexes, the S 1 ' enzyme subsite is unoccupied. A conformational rearrangement of the catalytic domain occurs that reveals an inherent flexibility of the substrate binding region leading to speculation about a possible mechanism for modulation of stromelysin activity and selectivity.
Isogenic strains containing insertional disruptions of 10 Haemophilus influenzae Rd genes were investigated for their effects on the susceptibility of the organism to various classes of antimicrobial compounds. MIC results show that HI1462, which encodes an Escherichia coli TolC homolog, is the third component of the H. influenzae AcrAB pump.
Targeted gene disruption by in vitro transposon mutagenesis has been used to identify the genes required for biosynthesis of the Haemophilus influenzae Rd cell wall under standard cultivation conditions. Of the 28 genes known to be associated with the cell wall biosynthetic pathway, 14 were determined to be essential
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.