Aims/hypothesis Mutations in BSCL2/seipin cause Berardinelli-Seip congenital lipodystrophy (BSCL), a rare recessive disorder characterised by near absence of adipose tissue and severe insulin resistance. We aimed to determine how seipin deficiency alters glucose and lipid homeostasis and whether thiazolidinediones can rescue the phenotype.
Methods Bscl2−/− mice were generated and phenotyped. X. Prieur, L. Dollet and M. Takahashi contributed equally to this study.Electronic supplementary material The online version of this article
Obesity is an important aspect of the metabolic syndrome and is often associated with chronic inflammation. In this context, inflammation of organs participating in energy homeostasis (such as liver, adipose tissue, muscle and pancreas) leads to the recruitment and activation of macrophages, which secrete pro-inflammatory cytokines. Interleukin-1β secretion, sustained C-reactive protein plasma levels and activation of the NLRP3 inflammasome characterize this inflammation. The Stearoyl-CoA desaturase-1 (SCD1) enzyme is a central regulator of lipid metabolism and fat storage. This enzyme catalyzes the generation of monounsaturated fatty acids (MUFAs)—major components of triglycerides stored in lipid droplets—from saturated fatty acid (SFA) substrates. In this review, we describe the molecular effects of specific classes of fatty acids (saturated and unsaturated) to better understand the impact of different diets (Western versus Mediterranean) on inflammation in a metabolic context. Given the beneficial effects of a MUFA-rich Mediterranean diet, we also present the most recent data on the role of SCD1 activity in the modulation of SFA-induced chronic inflammation.
Obesity and associated metabolic complications, such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D), are in constant increase around the world. While most obese patients show several metabolic and biometric abnormalities and comorbidities, a subgroup of patients representing 3% to 57% of obese adults, depending on the diagnosis criteria, remains metabolically healthy. Among many other factors, the gut microbiota is now identified as a determining factor in the pathogenesis of metabolically unhealthy obese (MUHO) individuals and in obesity-related diseases such as endotoxemia, intestinal and systemic inflammation, as well as insulin resistance. Interestingly, recent studies suggest that an optimal healthy-like gut microbiota structure may contribute to the metabolically healthy obese (MHO) phenotype. Here, we describe how dietary medium chain triglycerides (MCT), previously found to promote lipid catabolism, energy expenditure and weight loss, can ameliorate metabolic health via their capacity to improve both intestinal ecosystem and permeability. MCT-enriched diets could therefore be used to manage metabolic diseases through modification of gut microbiota.
Abstract. In normal tissues, energy-providing lipids come principally from circulating lipids. However, in growing tumors, energy supply is mainly provided by lipids coming from de novo synthesis. It is not surprising to see elevated expression of several lipogenic genes in tumors from different origins. The role of lipogenic genes in the establishment of the primary tumor has been clearly established. A large number of studies demonstrate a role of fatty acid synthase in the activation of cell cycle and inhibition of apoptosis in tumor cells. Other lipogenic genes such as the acetyl CoA carboxylase (ACC) and the stearoyl CoA desaturase 1 (SCD1) are highly expressed in primary tumors and also appear to play a role in their development. However, the role of lipogenesis in the metastatic process is less clear. In the present review, we aim to present the most recent evidences for the key role of lipogenic enzymes in the metastatic process and in epithelial to mesenchymal transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.