The pathogenetic mechanism of the deafness-associated mitochondrial DNA (mtDNA) T7445C mutation has been investigated in several lymphoblastoid cell lines from members of a New Zealand pedigree exhibiting the mutation in homoplasmic form and from control individuals. We show here that the mutation flanks the 3 end of the tRNA Ser(UCN) gene sequence and affects the rate but not the sites of processing of the tRNA precursor. This causes an average reduction of ϳ70% in the tRNA Ser(UCN) level and a decrease of ϳ45% in protein synthesis rate in the cell lines analyzed. The data show a sharp threshold in the capacity of tRNA Ser(UCN) to support the wild-type protein synthesis rate, which corresponds to ϳ40% of the control level of this tRNA. Strikingly, a 7445 mutation-associated marked reduction has been observed in the level of the mRNA for the NADH dehydrogenase (complex I) ND6 subunit gene, which is located ϳ7 kbp upstream and is cotranscribed with the tRNA Ser(UCN) gene, with strong evidence pointing to a mechanistic link with the tRNA precursor processing defect. Such reduction significantly affects the rate of synthesis of the ND6 subunit and plays a determinant role in the deafness-associated respiratory phenotype of the mutant cell lines. In particular, it accounts for their specific, very significant decrease in glutamate-or malate-dependent O 2 consumption. Furthermore, several homoplasmic mtDNA mutations affecting subunits of NADH dehydrogenase may play a synergistic role in the establishment of the respiratory phenotype of the mutant cells.
We have shown here that the apoptosis inducer staurosporine causes an early decrease in the endogenous respiration rate in intact 143B.TK ؊ cells. On the other hand, the activity of cytochrome c oxidase is unchanged for the first 8 h after staurosporine treatment, as determined by oxygen consumption measurements in intact cells. The decrease in the endogenous respiration rate precedes the release of cytochrome c from mitochondria. Moreover, we have ruled out caspases, permeability transition, and protein kinase C inhibition as being responsible for the decrease in respiration rate. Furthermore, overexpression of the gene for Bcl-2 does not prevent the decrease in respiration rate. The last finding suggests that Bcl-2 acts downstream of the perturbation in respiration. The evidence of normal enzymatic activities of complex I and complex III in staurosporinetreated 143B.TK ؊ osteosarcoma cells indicates that the cause of the respiration decrease is probably an alteration in the permeability of the outer mitochondrial membrane. Presumably, the voltage-dependent anion channel closes, thereby preventing ADP and oxidizable substrates from being taken up into mitochondria. This interpretation was confirmed by another surprising finding, namely that, in staurosporine-treated 143B.TK ؊ cells permeabilized with digitonin at a concentration not affecting the mitochondrial membranes in naive cells, the outer mitochondrial membrane loses its integrity; this leads to a reversal of its impermeability to exogenous substrates. The loss of outer membrane integrity leads also to a massive premature release of cytochrome c from mitochondria. Most significantly, Bcl-2 overexpression prevents the staurosporine-induced hypersensitivity of the outer membrane to digitonin. Our experiments have thus revealed early changes in the outer mitochondrial membrane, which take place long before cytochrome c is released from mitochondria in intact cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.