Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.
The purpose of the ForM@Ter LArge-scale multi-Temporal Sentinel-1 InterferoMetry service (FLATSIM) is the massive processing of Sentinel-1 data using multi-temporal interferometric synthetic aperture radar (InSAR) over large areas, i.e., greater than 250,000 km2. It provides the French ForM@ter scientific community with automatically processed products using a state of the art processing chain based on a small baseline subset approach, namely the New Small Baseline (NSBAS). The service results from a collaboration between the scientific team that develops and maintains the NSBAS processing chain and the French Spatial Agency (CNES) that mirrors the Sentinel-1 data. The proximity to Sentinel-1 data, the NSBAS workflow, and the specific optimizations to make NSBAS processing massively parallel for the CNES high performance computing infrastructure ensures the efficiency of the chain, especially in terms of input and output, which is the key for the success of such a service. The FLATSIM service is made of a production module, a delivery module and a user access module. Products include interferograms, surface line of sight velocity, phase delay time series and auxiliary data. Numerous quality indicators are provided for an in-depth analysis of the quality and limits of the results. The first national call in 2020 for region of interest ended up with 8 regions spread over the world with scientific interests, including seismology, tectonics, volcano-tectonics, and hydrological cycle. To illustrate the FLATSIM capabilities, an analysis is shown here on two processed regions, the Afar region in Ethiopa, and the eastern border of the Tibetan Plateau.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.