Abstract-Recent developments have shown the possibility of leveraging silicon nanophotonic technologies for chip-scale interconnection fabrics that deliver high bandwidth and power efficient communications both on-and off-chip. Since optical devices are fundamentally different from conventional electronic interconnect technologies, new design methodologies and tools are required to exploit the potential performance benefits in a manner that accurately incorporates the physically different behavior of photonics. We introduce PhoenixSim, a simulation environment for modeling computer systems that incorporates silicon nanophotonic devices as interconnection building blocks. PhoenixSim has been developed as a cross-discipline platform for studying photonic interconnects at both the physicallayer level and at the architectural and system levels. The broad scope at which modeled systems can be analyzed with PhoenixSim provides users with detailed information into the physical feasibility of the implementation, as well as the network and system performance. Here, we describe details about the implementation and methodology of the simulator, and present two case studies of silicon nanophotonic-based networks-on-chip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.