Insl3 mutants show feminized gubernaculum with deficient mesenchymal core. Insl3 appears to have some role in the gubernacular swelling reaction in mice.
The recently identified protein, insulin 3 (INSL3), has structural features that make it a bona fide member of the insulin superfamily. Its predicted amino acid sequence contains the classic two-peptide chain (A- and B-) structure with conserved cysteine residues that results in a disulphide bond disposition identical to that of insulin. Recently, the generation of insl3 knockout mice has demonstrated that testicular descent is blocked due to the failure of a specific ligament, the gubernaculum, to develop. The mechanism by which INSL3 exerts its action on the gubernaculum is currently unknown. The purpose of this study was to, for the first time, synthesize rat INSL3 and test its action on organ cultures of foetal rat gubernaculum. INSL3 also contains a cassette of residues Arg-X-X-X-Arg within the B-chain, a motif that is essential for characteristic activity of another related member of the superfamily, relaxin. Hence, the relaxin activity of rat INSL3 was also tested in two different relaxin bioassays. The primary structure of rat INSL3 was determined by deduction from its cDNA sequence and successfully prepared by solid phase peptide synthesis of the two constituent chains followed by their combination in solution. Following confirmation of its chemical integrity by a variety of analytical techniques, circular dichroism spectroscopy confirmed the presence of high beta-turn and alpha-helical content, with a remarkable spectral similarity to the synthetic ovine INSL3 peptide and to synthetic rat relaxin. The synthetic rat INSL3 bound with very low affinity to rat relaxin receptors and had no activity in a relaxin bioassay. Furthermore, it did not augment or antagonize relaxin activity. The rat INSL3 did however induce growth of foetal rat gubernaculum in whole organ cultures demonstrating that INSL3 has a direct action on this structure.
Although there was an observable effect on cremaster muscle development in these mutant mice, gubernacular development and testicular descent were otherwise normal, and thus there must be other reasons for the observed differences in humans with persistent Müllerian duct syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.