International recommendations for determination of reference intervals have been recently updated, especially for small reference sample groups, and use of the robust method and Box-Cox transformation is now recommended. Unfortunately, these methods are not included in most software programs used for data analysis by clinical laboratories. We have created a set of macroinstructions, named Reference Value Advisor, for use in Microsoft Excel to calculate reference limits applying different methods. For any series of data, Reference Value Advisor calculates reference limits (with 90% confidence intervals [CI]) using a nonparametric method when n≥40 and by parametric and robust methods from native and Box-Cox transformed values; tests normality of distributions using the Anderson-Darling test and outliers using Tukey and Dixon-Reed tests; displays the distribution of values in dot plots and histograms and constructs Q-Q plots for visual inspection of normality; and provides minimal guidelines in the form of comments based on international recommendations. The critical steps in determination of reference intervals are correct selection of as many reference individuals as possible and analysis of specimens in controlled preanalytical and analytical conditions. Computing tools cannot compensate for flaws in selection and size of the reference sample group and handling and analysis of samples. However, if those steps are performed properly, Reference Value Advisor, available as freeware at http://www.biostat.envt.fr/spip/spip.php?article63, permits rapid assessment and comparison of results calculated using different methods, including currently unavailable methods. This allows for selection of the most appropriate method, especially as the program provides the CI of limits. It should be useful in veterinary clinical pathology when only small reference sample groups are available.
Reference values are used to describe the dispersion of variables in healthy individuals. They are usually reported as population-based reference intervals (RIs) comprising 95% of the healthy population. International recommendations state the preferred method as a priori nonparametric determination from at least 120 reference individuals, but acceptable alternative methods include transference or validation from previously established RIs. The most critical steps in the determination of reference values are the selection of reference individuals based on extensively documented inclusion and exclusion criteria and the use of quality-controlled analytical procedures. When only small numbers of values are available, RIs can be estimated by new methods, but reference limits thus obtained may be highly imprecise. These recommendations are a challenge in veterinary clinical pathology, especially when only small numbers of reference individuals are available.
Fumonisins are mycotoxins frequently found as natural contaminants in maize, where they are produced by the plant pathogen Fusarium verticillioides. They are toxic to animals and exert their effects through mechanisms involving disruption of sphingolipid metabolism. Fumonisin B₁ (FB₁) is the predominant fumonisin in this family. FB₁ is converted to its hydrolyzed analogs HFB₁, by alkaline cooking (nixtamalization) or through enzymatic degradation. The toxicity of HFB₁ is poorly documented especially at the intestinal level. The objectives of this study were to compare the toxicity of HFB₁ and FB₁ and to assess the ability of these toxins to disrupt sphingolipids biosynthesis. HFB₁ was obtained by a deesterification of FB₁ with a carboxylesterase. Piglets, animals highly sensitive to FB₁, were exposed by gavage for 2 weeks to 2.8 μmol FB₁ or HFB₁/kg body weight/day. FB₁ induced hepatotoxicity as indicated by the lesion score, the level of several biochemical analytes and the expression of inflammatory cytokines. Similarly, FB₁ impaired the morphology of the different segments of the small intestine, reduced villi height and modified intestinal cytokine expression. By contrast, HFB₁ did not trigger hepatotoxicity, did not impair intestinal morphology and slightly modified the intestinal immune response. This low toxicity of HFB₁ correlates with a weak alteration of the sphinganine/sphingosine ratio in the liver and in the plasma. Taken together, these data demonstrate that HFB₁ does not cause intestinal or hepatic toxicity in the sensitive pig model and only slightly disrupts sphingolipids metabolism. This finding suggests that conversion to HFB₁ could be a good strategy to reduce FB₁ exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.