Functional connectivity is a key factor for the persistence of many specialist species in fragmented landscapes. However, connectivity estimates have rarely been validated by the observation of dispersal movements. In this study, we estimated functional connectivity of a real landscape by modelling dispersal for the endangered natterjack toad (Bufo calamita) using cost distance. Cost distance allows the evaluation of 'effective distances', which are distances corrected for the costs involved in moving between habitat patches in spatially explicit landscapes. We parameterized cost-distance models using the results of our previous experimental investigation of natterjack's movement behaviour. These model predictions (connectivity estimates from the GIS study) were then confronted to genetic-based dispersal rates between natterjack populations in the same landscape using Mantel tests. Dispersal rates between the populations were inferred from variation at six microsatellite loci. Based on these results, we conclude that matrix structure has a strong effect on dispersal rates. Moreover, we found that cost distances generated by habitat preferences explained dispersal rates better than did the Euclidian distances, or the connectivity estimate based on patch-specific resistances (patch viscosity). This study is a clear example of how landscape genetics can validate operational functional connectivity estimates.
To estimate and to use the effects of single genes on quantitative traits, genotypes need to be known. However, in large animal populations, the majority of animals are not genotyped. These missing genotypes have to be estimated. However, currently used methods are impractical for large pedigrees. An alternative method to estimate missing gene content, defined as the number of copies of a particular allele, was recently developed. In this study, the proposed method was tested by assessing its accuracy in estimation and use of gene content in large animal populations. This was done for the bovine transmembrane growth hormone receptor and its effects on first-lactation milk, fat, and protein test-day yields and somatic cell score in Holstein cows. Estimated gene substitution effects of replacing a copy of the phenylalanine-coding allele with a copy of the tyrosine-coding allele were 295 g/d for milk, −8.14 g/d for fat, −1.83 g/d for protein, and −0.022/ d for somatic cell score. However, only the gene substitution effect for milk was found to be significant. The accuracy of the estimated effects was evaluated by simulations and permutations. To validate the use of predicted gene content in a mixed inheritance model, a cross-validation study was done. The model with an additional regression of milk, fat, and protein yields and SCS on predicted gene content showed a better capacity to predict breeding values for milk, fat, and protein. Given these results, the estimation and use of allelic effects using this method proved functional and accurate.
The objective of this study was to estimate the myostatin (mh) gene's effect on milk, protein and fat yield in a large heterogeneous cow population, of which only a small portion was genotyped. For this purpose, a total of 13 992 889 test-day records derived from 799 778 cows were available. The mh gene effect was estimated via BLUP using a multi-lactation, multi-trait random regression test-day model with an additional fixed regression on mh gene content. As only 1416 animals, (of which 1183 cows had test-day records) were genotyped, more animals of additional breeds with assumed known genotype were added to estimate the genotype (gene content) of the remaining cows more reliably. This was carried out using the conventional pedigree information between genotyped animals and their non-genotyped relatives. Applying this rule, mean estimated gene content over all cows with test-day records was 0.104, showing that most cows were homozygous 1/1. In contrast, when gene content estimation was only based on genotyped animals, mean estimated gene content over all cows with test-day records was with 1.349 overestimated. Therefore, the applied method for gene content estimation in large populations needs additional genotype assumptions about additional animals representing genetic diversity when the breed composition in the complete population is heterogeneous and only a few animals from predominantly one breed are genotyped. Concerning allele substitution effects for one copy of the 'mh' gene variant, significant decreases of 276.1 kg milk, 23.6 kg fat and 22.8 kg protein/lactation were obtained on average when gene content estimation was additionally based on animals with assumed known genotype. Based on this result, knowledge of the mh genotypes and their effects has the potential to improve milk performance traits in cattle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.