Understanding migratory connectivity is essential for determining the drivers behind population dynamics and for implementing effective conservation strategies for migratory species. Genetic markers provide a means to describe migratory connectivity; however, they can be uninformative for species with weak population genetic structure, which has limited their application. Here, we demonstrated a genomic approach to describing migratory connectivity in the prothonotary warbler, Protonotaria citrea, a Neotropical songbird of conservation concern. Using 26,189 single nucleotide polymorphisms (SNPs), we revealed regional genetic structure between the Mississippi River Valley and the Atlantic Seaboard with overall weak genetic differentiation among populations (F ST = 0.0055; 95% CI: 0.0051-0.0059). Genetic variation had a stronger association with geographic rather than environmental factors, with each explaining 14.5% and 8.2% of genetic variation, respectively. By varying the numbers of genomic markers used in population assignment models with individuals of known provenance, we identified a maximum assignment accuracy (89.7% to site, 94.3% to region) using a subset of 600 highly differentiated SNPs. We then assigned samples from nonbreeding sites to breeding region and found low migratory connectivity. Our results highlight the importance of filtering markers for informative loci in models of population assignment. Quantifying migratory connectivity for weakly structured species will be useful for expanding studies to a wider range of migratory species across taxonomic groups and may contribute to a deeper understanding of the evolution of migratory strategies. K E Y W O R D S ddRADseq, migratory connectivity, population assignment, population genetics, Protonotaria citrea, redundancy analysis 1 | INTRODUC TI ON Migratory species are declining in abundance globally and represent a unique challenge for conservation planning (Robinson et al., 2009; Runge, Martin, Possingham, Willis, & Fuller, 2014). Understanding the spatial connections of populations throughout the full annual cycle is critical for understanding the ecology and evolutionary biology of migratory species and informing effective management decisions aimed at reversing declines (Faaborg et al.,
Prothonotary warbler (Protonotaria citrea) has shown a long-term decline in abundance in the United States. As a long-range migrant, these warblers are exposed to parasites in both tropical and temperate regions. The focus of this study was to use molecular techniques to examine the temporal prevalence patterns of heamosopridian parasites Plasmodium and Haemoproteus in breeding prothonotary warblers. The prevalence (presence or absence) of Plasmodium and Haemoproteus species was assayed using primer sets for the cytochrome b gene of the mitochondrial DNA. Blood samples were obtained from 187 adult prothonotary warblers collected at 3 central Virginia, U.S.A., breeding sites. The relationship between haemosporidian parasite infections and reproductive success also was examined. We found that 71% of captured prothonotary warblers were infected with haemosporidian parasites, specifically, with 36% prevalence for Haemoproteus spp. and 44% prevalence for Plasmodium spp., during the 2008 breeding season; for both parasites, prevalence increased throughout the season. We found significant variation in haemosporidian parasite prevalence across the breeding season that was strongly site specific. Conversely, we found no significant effects of haemosporidian parasite infections on the reproductive success of prothonotary warblers. This is in sharp contrast to recent reports suggesting considerable effects of these parasites on the reproductive success of wild birds.
Estimates of migratory connectivity are needed for full annual cycle population models of migratory bird species experiencing rapid declines in abundance. One technique to determine migratory connectivity is through stable isotope analysis. This low-resolution method may be influenced by how data are calibrated between isotopes measured in precipitation and those measured in feathers, and can be informed by incorporating relative abundance into the assignment model. eBird abundance maps are a new tool combining citizen science data into a predictive species distribution model. In the Prothonotary Warbler (Protonotaria citrea), a wetland-associated songbird with a patchy breeding distribution, we sought to use stable-hydrogen isotope analysis informed by a species-specific calibration equation and eBird abundance data to determine the strength of migratory connectivity. We developed a species-specific calibration equation using known-origin samples from the breeding grounds and found that stable-hydrogen isotope values measured in precipitation explained 50% of the variation in stable-hydrogen isotope values among feathers. We found that the assignment model incorporating eBird abundance data correctly identified the true origins of 66% of individuals, and that the average assignment area (as a measure of precision) was 64% of the breeding distribution. These results represented a 7% increase in precision and a 3% decrease in accuracy when compared to a model that was not informed by abundance. Based on these models, wintering populations from 6 countries represented a mix of likely breeding origins, suggesting low migratory connectivity for Prothonotary Warblers. We found evidence that wintering latitude was related to likely breeding origin, with individuals at western wintering locations more likely to have southern breeding origins, but this relationship was weak. These results corroborate studies using archival light-level geolocators and high-resolution genetic markers, which also demonstrated weak migratory connectivity in this species. For patchily distributed species, eBird abundance data may not provide a useful increase in precision and accuracy for isotope assignments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.