Several transposons have been developed from the streptomycete insertion sequence IS493. They have broad host specificity in Streptomyces species and insert relatively randomly into a consensus target sequence of gNCaNTgNNy. Collectively, they have specialized features that facilitate the following: cloning of DNA flanking insertions; physical mapping of insertions; construction of highly stable mutants; and efficient construction of mutant libraries. All of the transposons can be introduced into streptomycetes by conjugation from E. coli, and can be delivered by curing the temperature sensitive delivery plasmid. Tn5099 was used to physically map genes involved in daptomycin and red pigment production in Streptomyces roseosporus, and to clone daptomycin biosynthetic genes. Tn5099 was also used in Streptomyces fradiae to identify and clone a neutral genomic site for the insertion of a second copy of the tylF gene. Recombinants containing two copies of the tylF gene carried out the normally rate limiting conversion of macrocin to tylosin very efficiently, thus causing substantial increases in tylosin yield.
Plasmid pPS96 was used to disrupt the genomic region immediately upstream of pcbC in C. acremonium by homologous integration. Approximately 4% of the C. acremonium transformants obtained with pPS96 were unable to produce beta-lactam antibiotics. All transformants obtained with other plasmids and isolates which had not been exposed to transforming DNA retained the ability to produce beta-lactams. Enzyme analysis showed that ACV synthetase activity was missing in the beta-lactam-minus pPS96 transformants. Southern copies of pPS96 in all beta-lactam-minus transformants analyzed. However, predictable alterations of the targeted region were not detected. Transformation of antibiotic-minus transformants with plasmid pZAZ4, carrying a wild-type copy of the region targeted for disruption, resulted in restoration of the ability to produce beta-lactams in greater than 80% of the transformants recovered. Location of the pcbAB gene upstream from pcbC was confirmed by comparing the amino acid sequence of internal peptides from purified ACV synthetase with that deduced from the DNA sequence of the region targeted for disruption. The direction of transcription of the pcbAB gene is opposite that of the pcbC gene. Further analysis of amino acid sequence data from ACV synthetase revealed regions of strong similarity with the peptide synthetases responsible for production of tyrocidine and gramicidin S in Bacillus brevis.
A hybrid cefE gene was constructed by juxtaposing promoter sequences from the Penicillium chrysogenum pcbC gene to the open reading frame of the Streptomyces clavuligerus cefE gene. In S. clavuligerus the cefE gene codes for the enzyme penicillin N expandase [also known as deacetoxycephalosporin C synthetase (DAOCS)]. To insert the hybrid cefE gene into P. chrysogenum the vector pPS65 was constructed; pPS65 contains the hybrid cefE gene and the Aspergillus nidulans amdS gene. The amdS gene encodes acetamidase and provides for dominant selection in P. chrysogenum. Protoplasts of P. chrysogenum were transformed with pPS65 and selected for the ability to grow on acetamide medium. Extracts of cells cultivated in penicillin production medium were analyzed for penicillin N expandase activity. Penicillin N expandase activity was detected in approximately one-third of the transformants tested. Transformants WG9-69C-01 and WG9-61L-03 had the highest specific activities of penicillin N expandase: 4.3% and 10.3%, respectively, relative to the amount of penicillin N expandase in S. clavuligerus. Untransformed P. chrysogenum exhibited no penicillin N expandase activity. Analysis of the penicillin V titer revealed that WG9-61L-03 produced titers equal to that of the recipient strain while the amount of penicillin V produced in WG9-69C-01 was reduced by five fold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.