Recent improvements in target discovery and high throughput screening (HTS) have increased the pressure at key points along the drug discovery pipeline. High-content screening (HCS) was developed to ease bottlenecks that have formed at target validation and lead optimization points in the pipeline. HCS defines the role of targets in cell functions by combining fluorescence-based reagents with the ArrayScan™ System to automatically extract temporal and spatial information about target activities within cells. The ArrayScan System is a tabletop instrument that includes optics for subcellular resolution of fluorescence signals from many cells in a field within a well of a microtiter plate. One demonstrated application is a high-content screen designed to measure the drug-induced transport of a green fluorescent protein-human glucocorticoid receptor chimeric protein from the cytoplasm to the nucleus of human tumor cells. A high-content screen is also described for the multiparametric measurement of apoptosis. This single screen provides measurements of nuclear size and shape changes, nuclear DNA content, mitochondrial potential, and actin-cytoskeletal rearrangements during drug-induced programmed cell death. The next generation HCS system is a miniaturized screening platform, the CellChip™ System, that will increase the throughput of HCS, while integrating HCS with HTS on the same platform.
Over the last decade, imaging as a detection mode for cell based assays has opened a new world of opportunities to measure “phenotypic endpoints” in both current and developing biological models. These “high content” methods combine multiple measurements of cell physiology, whether it comes from sub-cellular compartments, multicellular structures, or model organisms. The resulting multifaceted data can be used to derive new insights into complex phenomena from cell differentiation to compound pharmacology and toxicity. Exploring the major application areas through review of the growing compendium of literature provides evidence that this technology is having a tangible impact on drug discovery and the life sciences.
High Throughput Screening (HTS) assays are used to rapidly identify promising drug candidates or leads from hundreds of thousands of compounds. Hence, it is important that the assay should be designed to discriminate responses from the active and inactive compounds and the background noise. We introduce the idea of a signal window which provides a degree of separation between signals. This allows one to correctly identify new molecular entities with desired level of activity (called "hits") in the presence of variability. The statistical criteria for setting and calculating signal windows are presented along with illustrative examples. Results show that the ideal signal window should be 2 standard deviations (SD) of the largest signal in screening assays, although a 1 SD window size is the minimum acceptable limit. When signal windows are set below 2 SD, the probability of missing "hits" increases significantly.
The serine hydroxymethyltransferase (SHMT) gene glyA was over-expressed in Escherichia coli and the enzyme was purified to near homogeneity. Reaction conditions for E. coli and rabbit liver SHMTs were optimized using succinic semialdehyde methyl ester (SSAME) and glycine. The catalytic efficiency (kcat/K(m)) of E. coli SHMT for SSAME was 2.8-fold higher than that of rabbit liver enzyme. E. coli SHMT displayed a pH-dependent product distribution different from that of rabbit liver enzyme. For the pyridoxal-5'-phosphate (PLP)-dependent reaction, E. coli and rabbit liver SHMTs showed a high product diastereospecificity. The stoichiometric ratio of PLP to the dimeric E. coli SHMT was 0.5-0.7, indicating a requirement for external PLP for maximal activity. Using SSAME or its analog at a high temperature, E. coli SHMT mediated efficient condensation via a lactone pathway. In contrast, at a low temperature, the enzyme catalyzed efficient conversion of 4-penten-1-al via a non-lactone mechanism. Efficient conversion of either aldehyde type to a desirable diastereospecific product was observed at a pilot scale. E. coli SHMT exhibited a broad specificity toward aldehyde substrates; thus it can be broadly useful in chemo-enzymatic synthesis of a chiral intermediate in the manufacture of an important carbacephem antibiotic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.