The onslaught on the World’s rhinoceroses continues despite numerous initiatives aimed at curbing it. When losses due to poaching exceed birth rates, declining rhino populations result. We used previously published estimates and growth rates for black rhinos (2008) and white rhinos (2010) together with known poaching trends at the time to predict population sizes and poaching rates in Kruger National Park, South Africa for 2013. Kruger is a stronghold for the south-eastern black rhino and southern white rhino. Counting rhinos on 878 blocks 3x3 km in size using helicopters, estimating availability bias and collating observer and detectability biases allowed estimates using the Jolly’s estimator. The exponential escalation in number of rhinos poached per day appears to have slowed. The black rhino estimate of 414 individuals (95% confidence interval: 343-487) was lower than the predicted 835 individuals (95% CI: 754-956). The white rhino estimate of 8,968 individuals (95% CI: 8,394-9,564) overlapped with the predicted 9,417 individuals (95% CI: 7,698-11,183). Density- and rainfall-dependent responses in birth- and death rates of white rhinos provide opportunities to offset anticipated poaching effects through removals of rhinos from high density areas to increase birth and survival rates. Biological management of rhinos, however, need complimentary management of the poaching threat as present poaching trends predict detectable declines in white rhino abundances by 2018. Strategic responses such as anti-poaching that protect supply from illegal harvesting, reducing demand, and increasing supply commonly require crime network disruption as a first step complimented by providing options for alternative economies in areas abutting protected areas.
Unrelenting poaching to feed the illegal trafficking of rhinoceros (rhino) horn remains the principle threat to the persistence of south-central black and southern white rhino that live in the Kruger National Park (Kruger), South Africa. Other global environmental change drivers, such as unpredictable climatic conditions, impose additional uncertainties on the management and persistence of these species. The drought experienced in Kruger over the 2015/2016 rainy season may have affected rhino population growth and thus added an additional population pressure to the poaching pressure already occurring. Under drought conditions, reduced grass biomass predicts increased natural deaths and a subsequent decrease in birth rate for the grazing white rhino. Such variance in natural death and birth rates for the browsing black rhino are not expected under these conditions. We evaluated these predictions using rhino population survey data from 2013 to 2017. Comparisons of natural deaths and birth rates between pre- (2013/2014 and 2014/15), during- (2015/2016) and post-drought (2016/2017) periods in Kruger showed increased natural mortality and decreased births for white rhino, but no significant changes for black rhino, supporting our predictions. As a result, despite reduced poaching rates, the total mortality rate of white rhino remains significantly higher than the birth rate. Decreased poaching, decreased natural deaths and no apparent drought effects in black rhino resulted in a lower total mortality rate than the estimated birth rate in 2017. Active biological management and traditional anti-poaching initiatives together therefore represent the most likely way to buffer the impacts of decreased population growth through climate change and wildlife crime on the persistence of rhinos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.