This work aims to evaluate the microbiological contamination of sewage sludge (SS) collected in urban wastewater treatment plants (WWTP) from Portugal. Two types of SS were considered: urban mixed (UM) and from anaerobic digestion (AD). The two types of samples were characterized in relation to the main physical and chemical parameters, as well as the microbiological contamination (Escherichia coli and Salmonella spp). Then, sanitation tests were conducted through thermal drying and chemical treatments. Towards a circular economy, industrial alkaline wastes (green liquor dregs -GLD, lime mud, coal fly ash, eggshell) were tested as alternatives to lime. Only six out of nineteen samples complied with the legal limits for both microorganisms. However, drying at 130 • C sanitized selected samples below the E. coli limit, regardless of the initial moisture or contamination. Additionally, CaO (obtained from eggshell) led to the complete elimination of E. coli at any dosage studied (0.05-0.15 g/g SS wet basis ). GLD evidenced the ability to reduce E. coli contamination at room temperature, but not enough to comply with the legal limit. In general, this work highlights the need to sanitize the SS before its application to the soil, and the positive role of some wastes on this goal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.