The flood event in July 2021 in the uplands of the Eifel-Ardennes mountains in Germany, Belgium and The Netherlands and their foreland was caused by heavy rainfall and resulted in one of the largest flood disasters in Western Europe for decades. Due to climate change, it can be assumed that such events will become more frequent in future. Even though such extreme flood can happen at any time, the consequences and impacts can be significantly reduced by appropriate technical and non-technical measures. However, such measures always require a comprehensive understanding and knowledge of previous events and comparable processes. Therefore, this special issue aims at collecting the scientific evaluation and its implications of the 2021 extreme summer flood. This editorial serves as an introduction for an article collection published in the journal Environmental Sciences Europe, providing an overview of the current state of integrative assessment of the 2021 summer flood in Central Europe.
Background Because of global climate change, extreme flood events are expected to increase in quantity and intensity in the upcoming decades. In catchments affected by ore mining, flooding leads to the deposition of fine sediments enriched in trace metal(loid)s. Depending on their concentration, trace metal(loid)s can be a health hazard. Therefore, exposure of the local population to flood sediments, either by ingestion (covering direct ingestion and consuming food grown on these sediments) or via inhalation of dried sediments contributing to atmospheric particulate matter, is of concern. Results The extreme flood of July 2021 deposited large amounts of sediment across the town of Eschweiler (western Germany), with the inundation area exceeding previously mapped extreme flood limits (HQextreme). These sediments are rich in fine material (with the < 63 µm fraction making up 32% to 96%), which either can stick to the skin and be ingested or inhaled. They are moderately to heavily enriched in Zn > Cu > Pb > Cd > Sn compared to local background concentrations. The concentrations of Zn, Pb, Cd, Cu, and As in flood sediments exceed international trigger action values. A simple assessment of inhalation and ingestion by humans reveals that the tolerable daily intake is exceeded for Pb. Despite the enrichment of other trace elements like Zn, Cu, Cd, and Sn, they presumably do not pose a risk to human well-being. However, exposure to high dust concentrations may be a health risk. Conclusions In conclusion, flood sediments, especially in catchments impacted by mining, may pose a risk to the affected public. Hence, we propose to (I) improve the flood mapping by incorporating potential pollution sources; (II) extend warning messages to incorporate specific guidance; (III) use appropriate clean-up strategies in the aftermath of such flooding events; (IV) provide medical support, and (V) clue the public and medical professionals in on this topic accordingly. Graphical Abstract
Littered plastics are partly introduced into water bodies, ultimately transporting this waste to the shores and oceans. At the shore, ultraviolet (UV) radiation (also present in other environmental compartments) and wave breaking cause plastics to degrade and fragment into smaller particles, called microplastics, if below 5 mm. Since these plastics’ surfaces can act as vectors for hydrophobic (toxic) chemical substances (e.g., per- and polyfluoroalkyl substances (PFAS)) and leach (toxic) chemicals into the water, the increase in the surface area through the fragmentation of plastics becomes relevant. Studies investigating different effects on the fragmentation of plastics have mostly disregarded a sufficient mechanical component for fragmentation, focusing on degradation by UV radiation. Therefore, this study investigated the impact of the mechanical fragmentation drivers, wave impact, and sediment abrasion on the fragmentation of expanded polystyrene (EPS), high-density polyethylene (PE-HD), and polyethylene terephthalate (PET) particles. In a newly designed test facility called Slosh-Box, the mentioned impacts were investigated concurrently. The results reveal that the mechanical impacts alone are sufficient for plastic fragmentation, and the test facility is suitable for fragmentation investigations. Furthermore, the increase in surface area was determined via scanning electron microscopy. For EPS, the surface area increased more than 2370-fold, while for PE-HD and PET, surface areas increased between 1 and 8.6 times. Concluding from the results, the new test facility is suitable for plastic fragmentation studies. In addition, sediment was revealed to be a relevant fragmentation driver, which should be included in every experiment investigating the fragmentation of plastic in a nearshore environment independent of other drivers like UV radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.