MicroRNAs (miRNAs) are endogenous small RNAs that posttranscriptionally regulate gene expression and that have been shown to have important roles in numerous disease processes. There is growing evidence for an important role of miRNAs in regulating the pathways in adipose tissue that control a range of processes including adipogenesis, insulin resistance and inflammation. Several high-throughput studies have identified differentially expressed miRNAs in adipose tissue pathology and during adipogenesis and a number of these have now been characterised functionally in terms of their actions and targets. This review will summarise the current literature on miRNAs in adipose tissue, as well as discussing the methodologies used in this area of research and the potential application of miRNAs as biomarkers and as therapeutic targets.
Upper-body adiposity is associated with increased metabolic disease risk, while lower-body adiposity is paradoxically protective. Efforts to understand the underlying mechanisms require appropriate and reproducible in vitro culture models. We have therefore generated immortalised (im) human preadipocyte (PAD) cell lines derived from paired subcutaneous abdominal and gluteal adipose tissue. These cell lines, denoted imAPAD and imGPAD display enhanced proliferation and robust adipogenic capacities. Differentiated imAPAD and imGPAD adipocytes synthesize triglycerides de novo and respond lipolytically to catecholamine-stimulation. Importantly the cells retain their depot-of-origin ‘memory’ as reflected by inherent differences in fatty acid metabolism and expression of depot-specific developmental genes. These features make these cell lines an invaluable tool for the in vitro investigation of depot-specific human adipocyte biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.