Abstrak : Penjadwalan praktikum merupakan proses penyusunan jadwal pelaksanaan yang menginformasikan sejumlah mata kuliah, dosen yang mengajar, ruang, serta waktu kegiatan perkuliahan di laboratorium. Perlu diperhatikan beberapa aspek untuk menyusun jadwal perkuliahan yang sesuai dengan kebutuhan. Aspek yang perlu diperhatikan antara lain adalah aspek dari dosen yang mengajar, mata kuliah yang diajar. Penyusunan jadwal secara manual cenderung membutuhkan waktu yang lebih lama dan ketelitian yang cukup bagi pembuat jadwal. Untuk dapat membuat jadwal yang optional, dibutuhkan metode optimasi. Pada penelitian ini, akan diuji coba metode optimasi dalam pembuatan jadwal praktikum yaitu Algoritma Genetika. Algoritma genetika merupakan pendekatan komputasional untuk menyelesaikan masalah yang dimodelkan dengan proses biologi dari evolusi. Parameter-parameter Algoritma Genetika yang mempengaruhi jadwal perkuliahan yang dihasilkan adalah jumlah individu, probabilitas crossover, probabilitas mutasi serta metode seleksi, crossover yang digunakan. Pengujian dilakukan dengan cara mencari nilai parameter-parameter algoritma genetika yang paling optimal dalam jadwal perkuliahan. Hasil penelitian menunjukkan bahwa dengan jumlah generasi, jumlah individu, probabilitas crossover dan probabilitas mutasi dapat menghasilkan jadwal yang paling optimal.Kata kunci: Optimasi, Penjadwalan, Seleksi, Crossover, Mutasi, Algoritma GenetikaAbstract : Practical scheduling is the process of preparation of an implementation schedule that informs a number of courses, lecturers who teach, space, and time of lecture activities in the laboratory. It should be noted several aspects to arrange lecture schedule in accordance with the needs. Aspects that need to be considered include aspects of lecturers who teach, courses taught. Manual scheduling tends to take longer and enough accuracy for the schedule maker. To be able to create an optional schedule, an optimization method is required. In this research, will be tested the optimization method in the preparation of the practice schedule that is Genetic Algorithm. Genetic algorithms are a computational approach to solving problems modeled by biological processes of evolution. The parameters of the Genetic Algorithm affecting the course schedule are the number of individuals, the probability of crossover, the probability of mutation and the method of selection, the crossover used. Testing is done by finding the most optimal parameter values of genetic algorithm in lecture schedule. The results show that with the number of generations, the number of individuals, the probability of crossover and the probability of mutation can produce the most optimal schedule. Keywords: Optimization, Scheduling, Selection, Crossover, Mutation, Genetic Algorithm
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.