α-Mangostin (a xanthone derivative found in the pericarp of Garcinia mangostana L.) and propolis extract (which is rich in flavonoids and phenols) are known for their antioxidant properties, making them potential supplements for the treatment of oxidative stress-related conditions. However, these two potential substances have the same primary drawback, which is low solubility in water. The low water solubility of α-mangostin and propolis can be overcome by utilizing nanotechnology approaches. In this study, a propolis-based nanostructured lipid carrier (NLC) system was formulated to enhance the delivery of α-mangostin. The aim of this study was to characterize the formulation and investigate its influence on the antioxidant activity of α-mangostin. The results showed that both unloaded propolis-based NLC (NLC-P) and α-mangostin-loaded propolis-based NLC (NLC-P-α-M) had nanoscale particle sizes (72.7 ± 1.082 nm and 80.3 ± 1.015 nm, respectively), neutral surface zeta potential (ranging between +10 mV and −10 mV), and good particle size distribution (indicated by a polydispersity index of <0.3). The NLC-P-α-M exhibited good entrapment efficiency of 87.972 ± 0.246%. Dissolution testing indicated a ~13-fold increase in the solubility of α-mangostin compared to α-mangostin powder alone. The incorporation into the propolis-based NLC system correlated well with the enhanced antioxidant activity of α-mangostin (p < 0.01) compared to NLC-P and α-mangostin alone. Therefore, the modification of the delivery system by incorporating α-mangostin into the propolis-based NLC overcomes the physicochemical challenges of α-mangostin while enhancing its antioxidant effectiveness.
ACE2 and Mpro in the pathology of SARS-CoV-2 show great potential in developing COVID-19 drugs as therapeutic targets, due to their roles as the “gate” of viral entry and viral reproduction. Of the many potential compounds for ACE2 and Mpro inhibition, α-mangostin is a promising candidate. Unfortunately, the potential of α-mangostin as a secondary metabolite with the anti-SARS-CoV-2 activity is hindered due to its low solubility in water. Other xanthone isolates, which also possess the xanthone core structure like α-mangostin, are predicted to be potential alternatives to α-mangostin in COVID-19 treatment, addressing the low drug-likeness of α-mangostin. This study aims to assess the potential of xanthone derivative compounds in the pericarp of mangosteen (Garcinia mangostana L.) through computational study. The study was conducted through screening activity using molecular docking study, drug-likeness prediction using Lipinski’s rule of five filtration, pharmacokinetic and toxicity prediction to evaluate the safety profile, and molecular dynamic study to evaluate the stability of formed interactions. The research results showed that there were 11 compounds with high potential to inhibit ACE2 and 12 compounds to inhibit Mpro. However, only garcinone B, in addition to being indicated as active, also possesses a drug-likeness, pharmacokinetic, and toxicity profile that was suitable. The molecular dynamic study exhibited proper stability interaction between garcinone B with ACE2 and Mpro. Therefore, garcinone B, as a xanthone derivative isolate compound, has promising potential for further study as a COVID-19 treatment as an ACE2 and Mpro inhibitor.
Breast cancer is a type of cancer with the highest prevalence worldwide. Almost 10–30% of breast cancer cases are diagnosed as positive for HER2 (human epidermal growth factor receptor 2). The currently available treatment methods still exhibit many shortcomings such as a high incidence of side effects and treatment failure due to resistance. This in silico study aims to simulate α-mangostin and chitosan combination conjugated to trastuzumab formulation against HER2 as an effort to improve breast cancer patient therapy. This molecular docking simulation was done through using PatchDock Server. The materials used including the two-dimensional structure of α-mangostin, chitosan, and sodium tripolyphosphate from the PubChem database; trastuzumab FASTA sequence from the DrugBank database; and HER2 structure obtained from a crystal complex with PDB ID: 1N8Z. The results indicated that the particle of α-mangostin and chitosan combinations interacted mostly with the crystallizable fragment (Fc region) of trastuzumab in the conjugation process. The conjugation of trastuzumab to the particle of a combination of α-mangostin and chitosan resulted in the greatest increase in the binding score of the smallest-sized particles (50 Å) with an increase in the score of 3828 and also gave the most similar mode of interaction with trastuzumab. However, the conjugation of trastuzumab eliminated the similarity of the mode of interaction and increased the value of atomic contact energy. Thus, a cominbation of α-mangostin and chitosan conjugated to a trastuzumab formulation was predicted can increase the effectiveness of breast cancer therapy at a relatively small particle size but with the consequence of decreasing atomic contact energy.
Sungai Citarum merupakan sungai terpanjang di Indonesia. Sebagai sumber air yang digunakan oleh masyarakat, sungai Citarum belum memenuhi standar kelayakan yang diharapkan. Salah satu masalah yang menyebabkan hal ini adalah pencemaran sungai oleh sampah. Salah satu daerah aliran sungai (DAS) yang merupakan hulu dari sungai Citarum terletak di Desa Sukarapih. Dengan demikian, melalui program "Kuliah Kerja Nyata Citarum Harum (KKN) Desa Sukarapih" diharapkan dapat meningkatkan kualitas sanitasi dan kebersihan sungai Citarum. Berbagai program kegiatan telah dilakukan, salah satunya adalah sosialisasi pengelolaan sampah Sungai Citarum ke berbagai lapisan masyarakat di Desa Sukarapih. Kegiatan selanjutnya adalah menyelenggarakan lokakarya (Workshop) pengelolaan sampah untuk siswa Sekolah Dasar Magarluyu, Desa Sukarapih, Kecamatan Sukasari, Kabupaten Sumedang. Diperoleh korelasi yang signifikan (P=0,018) dari hasil pengajuan lokakarya kepada siswa Sekolah Dasar mengenai kesadaran diri dalam menjaga kebersihan sungai. Sementara korelasi yang tidak signifikan diperoleh (P=0,253) dari hasil penyampaian seminar ke berbagai lapisan masyarakat desa. Citarum River is the longest river in Indonesia. As a source of water used by many communities, Citarum River has not met the proper eligibility standards. One problem that causes this is the pollution of the river through garbage. One of the river basins (DAS) which is the upstream of the Citarum river is located in Sukarapih Village. Thus, through the program "Citarum Harum Social Service (KKN) Sukarapih Village" is expected to improve the quality of sanitation and cleanliness of the Citarum river. Various program activities have been carried out, one of which is the socialization of Citarum River waste management to various levels of society in Sukarapih Village. The next activity was to organize a waste management workshop for Magarluyu Elementary School students, Sukarapih Village, Sukasari District, Sumedang Regency. A significant correlation was obtained (P=0,018) from the results of the workshop submission to elementary students regarding self-care in maintaining river cleanliness. While an insignificant correlation was obtained (P=0,253) from the results of the seminar delivery to various layers of village community.
Diabetes mellitus tipe 2 disebabkan oleh ekspresi PTP1B yang tinggi dan mempengaruhi aktivitas PTKs, yang menyebabkan insulin gagal berikatan dengan reseptor insulin dan menginduksi resistensi insulin. Senyawa xanton dan benzofenon merupakan senyawa yang telah diketahui memiliki aktivitas farmakologi sebagai antidiabetes. Salah satu tanaman dengan kandungan senyawa tersebut adalah Garcinia cowa. Penelitian ini dilakukan dengan tujuan untuk mengetahui afinitas dan mekanisme inhibisi PTP1B oleh senyawa turunan xanton, benzofeno, dan triterpenoid dalam Garcinia cowa antara lain garcinia cowone K, guttiferone I, 1,7-dihydroxyxanthone, 1-hydroxyl-7-methoxyxanthone, mangostinone, ?-mangostin, cowanol, gacibiphenyl C, friedelin, ?-friedelinol, dan oleanane-12-ol secara in silico dengan molecular docking serta melakukan studi pre-ADMET terhadap senyawa tersebut. Molecular docking dilakukan melalui beberapa tahap diantaranya preparasi dan optimasi struktur 3D senyawa uji, preparasi struktur 3D reseptor PTP1B, validasi metode, dan docking senyawa uji dengan PTP1B. Hasil yang diperoleh dari docking senyawa uji dengan reseptor PTP1B berupa energi ikatan, konstanta inhibisi (KI), dan ikatan hidrogen. Semakin rendah nilai energi ikatan menunjukkan ikatan antara protein dan ligan yang dihasilkan semakin stabil. Hasil penelitian menunjukkan energi ikatan dan KI PTP1B dengan native ligand berturut-turut sebesar -10,07 kkal/mol dan 0,0417 ?M. Sementara dengan senyawa ?-mangostin berturut-turut sebesar -8,91 kkal/mol dan 0.29317 ?M. Hal tersebut menunjukkan bahwa senyawa ?-mangostin memiliki potensi sebagai antidiabetes mellitus tipe 2 dengan menghambat PTP1B. Selain itu, senyawa ?-mangostin juga memiliki profil ADMET yang baik. Kata kunci: antidiabetes, diabetes mellitus tipe 2, penambatan molekuler, PTP1B, Xanton Type 2 diabetes mellitus is caused by high PTP1B expression and affects the activity of PTKs, which causes insulin to fail to bind to insulin receptors, and induces insulin resistance. Xanthones and benzophenones are compounds that have been known to have pharmacological activity as antidiabetic. One of the plants containing these compounds is Garcinia cowa. This study aims to know the affinity and inhibition mechanism of PTP1B by xanthones, benzophenones, and triterpenoid in Garcinia cowa, including garcinia cowone K, guttiferone I, 1,7-dihydroxyxanthone, 1-hydroxyl-7 methoxyxanthone, mangostinone, ?-mangostin, cowanol, gacibiphenyl C, friedelin, ?-friedelinol, and oleanane-12-ol in silico by molecular docking and conducted a pre-ADMET study of these compounds. Molecular docking is carried out in several steps including preparation and optimization of the 3D structure of the compound, preparation of the PTP1B receptor 3D structure, method validation, and docking of the compound with PTP1B. The results obtained from the docking of the compound with the PTP1B receptor appears in the form of bond energies, inhibition constant (IC), and hydrogen bonds. The lower the bond energy value, the more stable the bond between the protein and the resulting ligand is. The results showed that the bond energy and IC value of PTP1B with the native ligand is -10,07 kcal/mol and 0,0417 ?M. Meanwhile the ?-mangostin compound is -8,91 kcal/mol and 0,29317 ?M. It shows that the ?-mangostin has potential as an antidiabetic mellitus type 2 agent by inhibiting PTP1B. In addition, ?-mangostin also shows a good ADMET profile. Keywords: antidiabetic, molecular docking, PTP1B, type 2 diabetes mellitus, xanthones
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.