Erythrocyte invasion by Plasmodium falciparum is central to the pathogenesis of malaria. Invasion requires a series of extracellular recognition events between erythrocyte receptors and ligands on the merozoite, the invasive form of the parasite. None of the few known receptor-ligand interactions involved1-4 are required in all parasite strains suggesting that the parasite is able to access multiple redundant invasion pathways5. Here, we show that we have identified a receptor-ligand pair that is essential for erythrocyte invasion in all tested P. falciparum strains. By systematically screening a library of erythrocyte proteins, we have found that the Ok blood group antigen, BASIGIN, is a receptor for PfRh5, a parasite ligand that is essential for blood stage growth6. Erythrocyte invasion was potently inhibited by soluble BASIGIN or by BASIGIN knockdown, and invasion could be completely blocked using low concentrations of anti-BASIGIN antibodies; importantly, these effects were observed across all laboratory-adapted and field strains tested. Furthermore, Ok(a−) erythrocytes, which express a BASIGIN variant that has a weaker binding affinity for PfRh5, exhibited reduced invasion efficiencies. Our discovery of a cross-strain dependency on a single extracellular receptor-ligand pair for erythrocyte invasion by P. falciparum provides a focus for novel anti-malarial therapies.
The lining of the intestine is renewed at an extraordinary rate, outpacing all other tissues in the vertebrate body. The renewal process is neatly organized in space, so that the whole production line, from the ever-youthful stem cells to their dying, terminally differentiated progeny, is laid out to view in histological sections. A flurry of recent papers has clarified the key regulatory signals and brought us to the point where we can begin to give a coherent account, for at least one tissue, of how these signals collaborate to organize the architecture and behaviour of a stem-cell system.
Current vaccine strategies against the asexual blood-stage of Plasmodium falciparum are mostly focused on well-studied merozoite antigens which induce immune responses after natural exposure, but have yet to induce robust protection in any clinical trial. Here we compare human-compatible viral vectored vaccines targeting ten different blood-stage antigens. We show that the full-length P. falciparum reticulocyte-binding protein homologue 5 (PfRH5) is highly susceptible to cross-strain neutralizing vaccine-induced antibodies, out-performing all other antigens delivered by the same vaccine platform. We find that despite being susceptible to antibody, PfRH5 is unlikely to be under substantial immune selection pressure; there is minimal acquisition of anti-PfRH5 IgG antibodies in malaria-exposed Kenyans. These data challenge the widespread beliefs that any merozoite antigen that is highly susceptible to immune attack would be subject to significant levels of antigenic polymorphism, and that erythrocyte invasion by P. falciparum is a degenerate process involving a series of parallel redundant pathways.
SummaryAntigenic diversity has posed a critical barrier to vaccine development against the pathogenic blood-stage infection of the human malaria parasite Plasmodium falciparum. To date, only strain-specific protection has been reported by trials of such vaccines in nonhuman primates. We recently showed that P. falciparum reticulocyte binding protein homolog 5 (PfRH5), a merozoite adhesin required for erythrocyte invasion, is highly susceptible to vaccine-inducible strain-transcending parasite-neutralizing antibody. In vivo efficacy of PfRH5-based vaccines has not previously been evaluated. Here, we demonstrate that PfRH5-based vaccines can protect Aotus monkeys against a virulent vaccine-heterologous P. falciparum challenge and show that such protection can be achieved by a human-compatible vaccine formulation. Protection was associated with anti-PfRH5 antibody concentration and in vitro parasite-neutralizing activity, supporting the use of this in vitro assay to predict the in vivo efficacy of future vaccine candidates. These data suggest that PfRH5-based vaccines have potential to achieve strain-transcending efficacy in humans.
The transparency of the juvenile zebrafish and its genetic advantages make it an attractive model for study of cell turnover in the gut. BrdU labelling shows that the gut epithelium is renewed in essentially the same way as in mammals: the villi are lined with non-dividing differentiated cells, while cell division is confined to the intervillus pockets. New cells produced in the pockets take about 4 days to migrate out to the tips of the villi, where they die. We have generated monoclonal antibodies to identify the absorptive and secretory cells in the epithelium, and we have used these antibodies to examine the part that Delta-Notch signalling plays in producing the diversity of intestinal cell types. Several Notch receptors and ligands are expressed in the gut. In particular, the Notch ligand DeltaD (Delta1 in the mouse) is expressed in cells of the secretory lineage. In an aei mutant, where DeltaD is defective, secretory cells are overproduced. In mind bomb(mib), where all Delta-Notch signalling is believed to be blocked,almost all the cells in the 3-day gut epithelium adopt a secretory character. Thus, secretory differentiation appears to be the default in the absence of Notch activation, and lateral inhibition mediated by Delta-Notch signalling is required to generate a balanced mixture of absorptive and secretory cells. These findings demonstrate the central role of Notch signalling in the gut stem-cell system and establish the zebrafish as a model for study of the mechanisms controlling renewal of gut epithelium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.