These data encourage further investigation of ABC transporters as potentially important regulators of HF epithelial biology. Clinically, pharmacological modulation of the activity of selected intrafollicular ABC transporters may permit novel therapeutic interventions, such as protecting HF stem cells from chemotherapy-induced damage, counteracting cholesterol-associated hypertrichosis, and manipulating the intrafollicular prostaglandin balance in androgenetic alopecia.
Staphylococcus aureus causes the majority of skin and soft tissue infections. Half of patients treated for primary skin infections suffer recurrences within 6 months despite appropriate antibiotic sensitivities and infection control measures. We investigated whether S. aureus internalized by human skin keratinocytes are effectively eradicated by standard anti-staphylococcal antibiotics. S. aureus, but not S. epidermidis, were internalized and survive within keratinocytes without inducing cytotoxicity or releasing the IL-33 danger signal. Except for rifampicin, anti-staphylococcal antibiotics in regular clinical use, including flucloxacillin, teicoplanin, clindamycin, and linezolid, did not kill internalized S. aureus, even at 20-fold their standard minimal inhibitory concentration. We conclude that internalization of S. aureus by human skin keratinocytes allows the bacteria to evade killing by most anti-staphylococcal antibiotics. Antimicrobial strategies, including antibiotic combinations better able to penetrate into mammalian cells are required if intracellular S. aureus are to be effectively eradicated and recurrent infections prevented.
The ability to conserve water is fundamental to terrestrial life. A number of organs such as the kidney and the bladder have important roles in the regulation of body water balance. The epidermis of skin is also fundamental to this process, and it is in a constant battle to prevent loss of water to the external, dry environment. Given this important role of the epidermis as a barrier to water loss, it is perhaps surprising that many of the cellular mechanisms by which human keratinocytes achieve cell volume homoeostasis, maintain epidermal hydration and adapt to biological effects from environmental stressors such as ultraviolet radiation are poorly understood. This article reviews what is known thus far and speculates about other potential mechanisms through which skin conducts water homoeostasis, with a particular emphasis on the putative role of organic osmolytes.
Epidermal barrier function is provided by the highly keratinised stratum corneum and also by tight junctions (TJs) in the granular layer of skin. The development of the TJ barrier significantly deteriorates in response to ultraviolet B radiation (UVB). Following exposure to UVB, keratinocytes accumulate organic osmolytes, which are known to preserve cell volume during water stress. Since TJs are intimately associated with control of water homeostasis in skin, we hypothesised that there may be a direct influence of osmolytes on TJ development. Exposure of rat epidermal keratinocytes (REKs) to a single dose of UVB reduced the function of developing TJs. This was concomitant with dislocalisation of claudin-1 and claudin-4 from the keratinocyte plasma membrane, phosphorylation of occludin and elevation of reactive oxygen species (ROS). In the presence of organic osmolytes, these effects were negated but were independent of the effects of these molecules on cell volume, elevation of ROS or the gene expression of TJ proteins. These data suggest that organic osmolytes affect TJs via post-translational mechanism(s) possibly involving protection of the native conformation of TJ proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.