In many species the pancreatic duct epithelium secretes HCO3- ions at a concentration of around 140 mM by a mechanism that is only partially understood. We know that HCO3- uptake at the basolateral membrane is achieved by Na+-HCO3- cotransport and also by a H+-ATPase and Na+/H+ exchanger operating together with carbonic anhydrase. At the apical membrane, the secretion of moderate concentrations of HCO3- can be explained by the parallel activity of a Cl-/HCO3- exchanger and a Cl- conductance, either the cystic fibrosis transmembrane conductance regulator (CFTR) or a Ca2+-activated Cl- channel (CaCC). However, the sustained secretion of HCO3- into a HCO- -rich luminal fluid cannot be explained by conventional Cl-/HCO3- exchange. HCO3- efflux across the apical membrane is an electrogenic process that is facilitated by the depletion of intracellular Cl-, but it remains to be seen whether it is mediated predominantly by CFTR or by an electrogenic SLC26 anion exchanger.
Background: COVID-19 is a serious and potentially deadly disease. Early diagnosis of infected individuals will play an important role in stopping its further escalation. The present gold standard for sampling is the nasopharyngeal swab method. However, several recent papers suggested that saliva-based testing is a promising alternative that could simplify and accelerate COVID-19 diagnosis. Objectives: Our aim was to conduct a meta-analysis on the reliability and consistency of SARS-CoV-2 viral RNA detection in saliva specimens. Methods: We have reported our meta-analysis according to the Cochrane Handbook. We searched the Cochrane Library, Embase, Pubmed, Scopus, Web of Science and clinical trial registries for eligible studies published between 1 January and 25 April 2020. The number of positive tests and the total number of tests conducted were collected as raw data. The proportion of positive tests in the pooled data were calculated by score confidence-interval estimation with the Freeman–Tukey transformation. Heterogeneity was assessed using the I 2 measure and the χ 2 -test. Results: The systematic search revealed 96 records after removal of duplicates. Twenty-six records were included for qualitative analysis and 5 records for quantitative synthesis. We found 91% (CI 80–99%) sensitivity for saliva tests and 98% (CI 89–100%) sensitivity for nasopharyngeal swab (NPS) tests in previously confirmed COVID-19 patients, with moderate heterogeneity among the studies. Additionally, we identified 18 registered, ongoing clinical trials of saliva-based tests for detection of the virus. Conclusion: Saliva tests offer a promising alternative to NPS for COVID-19 diagnosis. However, further diagnostic accuracy studies are needed to improve their specificity and sensitivity.
1. Short segments of interlobular duct were microdissected from guinea-pig pancreas following enzymatic digestion. After overnight culture, intracellular pH (pH1) and Na+ concentration ([Na+]1) were measured by microfluorometry in duct cells loaded with either the pH-sensitive fluoroprobe 2'7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) or the sodium-binding benzofuran isophthalate (SBFI).2. The transporters responsible for maintaining pHi above equilibrium were investigated by using the NH4C1 pulse technique to acid load the cells. In the absence of HCO3-/CO2, the recovery of pHi was Na+ dependent, abolished by 0-2 mm amiloride and by 10 am N-methyl-N-isobutylamiloride and was therefore attributed to Na+-H+ exchange.3. In the presence of HC03-/CO2, amiloride only partially inhibited the recovery from acid loading. The amiloride-insensitive component was abolished by 0 5 mm H2DIDS and unaffected by depletion of intracellular Cl-and was therefore attributed to Na+-HCO03 cotransport.4. Stimulation with 10 nm secretin did not cause a significant change in pHi despite a significant increase in HC03-efflux. However, in the presence of secretin, addition of 0 5 mm H2DIDS caused a decline in pHi that was three times more rapid than that obtained with 0-2 mm amiloride.5. In secretin-stimulated ducts, Na+ uptake increased when HC03-/CO2 was added to the bath and this increase was strongly inhibited by 0.5 mm H2DIDS. 6. We conclude that Na+-HCO -cotransport contributes approximately 75% of the HC03-taken up by guinea-pig pancreatic duct cells during stimulation with secretin. It is proposed that electrical coupling between HC03-efflux at the luminal membrane and electrogenic
Aquaporin (AQP) water channels are expressed in a variety of fluid-transporting epithelia and are likely to play a significant role in salivary secretion. Our aim was to identify and localize the aquaporins expressed in human salivary glands. Total RNA was extracted from human parotid, submandibular, sublingual, and labial glands and from human brain. Expression of aquaporin mRNA was assessed by RT-PCR using specific primers for human AQP1, AQP3, AQP4, and AQP5. All four aquaporins were detected by RT-PCR in all of the glands, and the sequences were confirmed after further amplification with nested primers. Cleaned PCR products were then used as (32)P-labeled cDNA probes in a semiquantitative Northern blot analysis using glyceraldehyde-3-phosphate dehydrogenase as reference. Only AQP1, AQP3, and AQP5 mRNAs were present at significant levels. AQP localization was determined by immunohistochemistry on paraffin sections using affinity-purified primary antibodies and peroxidase-linked secondary antibodies. Each salivary gland type showed a broadly similar staining pattern: AQP1 was localized to the capillary endothelium and myoepithelial cells; AQP3 was present in the basolateral membranes of both mucous and serous acinar cells; AQP4 was not detected; and AQP5 was expressed in the luminal and canalicular membranes of both types of acinar cell. We conclude that AQP3 and AQP5 together may provide a pathway for transcellular osmotic water flow in the formation of the primary saliva.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.