Aquaporin (AQP) water-channel proteins are freely permeated by water but not by ions or charged solutes. Although mammalian aquaporins were believed to be located in plasma membranes, rat AQP6 is restricted to intracellular vesicles in renal epithelia. Here we show that AQP6 is functionally distinct from other known aquaporins. When expressed in Xenopus laevis oocytes, AQP6 exhibits low basal water permeability; however, when treated with the known water channel inhibitor, Hg2+, the water permeability of AQP6 oocytes rapidly rises up to tenfold and is accompanied by ion conductance. AQP6 colocalizes with H+-ATPase in intracellular vesicles of acid-secreting alpha-intercalated cells in renal collecting duct. At pH less than 5.5, anion conductance is rapidly and reversibly activated in AQP6 oocytes. Site-directed mutation of lysine to glutamate at position 72 in the cytoplasmic mouth of the pore changes the cation/anion selectivity, but leaves low pH activation intact. Our results demonstrate unusual biophysical properties of an aquaporin, and indicate that anion-channel function may now be explored in a protein with known structure.
T he hypothalamic-neurohypophyseal-renal axis normally maintains water balance during variations in water intake and nonrenal losses of water. Failure of this mechanism is common in hospitalized patients, and it results in a variety of water-balance disorders. In this article, we begin by reviewing the classic, integrative principles of water balance in mammals and then use this classic model as a framework to discuss the genes and gene products (proteins) involved in water balance. In so doing, our goal is to provide clinicians with a mechanistic basis for decisions regarding the diagnosis and treatment of waterbalance disorders.The regulation of water balance is governed by a high-gain feedback mechanism involving the hypothalamus, the neurohypophysis, and the kidneys (Fig. 1). Osmoreceptors in the hypothalamus, which originally were described by Verney, 1 sense plasma osmolality. The molecular mechanism of "osmosensing" has recently been described by Danziger and Zeidel. 2 It is, in part, dependent on activation of nonselective calcium-permeable cation channels in osmosensing neurons that can serve as stretch receptors.When plasma osmolality increases to levels above a physiologic threshold (290 to 295 mOsm per kilogram of water in most persons), there is increased secretion of the peptide hormone vasopressin from vasopressinergic nerve endings in the neurohypophysis. High osmolality also triggers thirst. Vasopressin binds to receptors in the kidney that decrease excretion of water (Fig. 2), and a greater fraction of filtered water is returned to the blood. The rate of water excretion can vary over a broad range in response to changes in plasma vasopressin levels without substantial changes in net solute excretion (osmolar clearance). This independent control of water and solute excretion is the result of specialized urinary concentrating and diluting mechanisms; these mechanisms are reviewed elsewhere. 3 Increased renal reabsorption of water in response to vasopressin lowers plasma osmolality, thereby reducing the stimulus for vasopressin secretion and thirst and completing the feedback loop (Fig. 1). Table 1 provides a list of the major proteins that are responsible for components of the integrative model shown in Figure 1. These proteins are the focus of this review. A rginine Va sopr essinThe gene coding for arginine vasopressin (AVP) is expressed in neurons of the supraoptic and paraventricular nuclei of the hypothalamus. Arginine vasopressin is a typical neuropeptide, since its gene codes for a prohormone that must undergo specific proteolytic processing to produce the active hormone. Thus, AVP codes for three peptides -the 9-amino acid peptide arginine vasopressin, a car-
Aquaporin (AQP) water channels are expressed in a variety of fluid-transporting epithelia and are likely to play a significant role in salivary secretion. Our aim was to identify and localize the aquaporins expressed in human salivary glands. Total RNA was extracted from human parotid, submandibular, sublingual, and labial glands and from human brain. Expression of aquaporin mRNA was assessed by RT-PCR using specific primers for human AQP1, AQP3, AQP4, and AQP5. All four aquaporins were detected by RT-PCR in all of the glands, and the sequences were confirmed after further amplification with nested primers. Cleaned PCR products were then used as (32)P-labeled cDNA probes in a semiquantitative Northern blot analysis using glyceraldehyde-3-phosphate dehydrogenase as reference. Only AQP1, AQP3, and AQP5 mRNAs were present at significant levels. AQP localization was determined by immunohistochemistry on paraffin sections using affinity-purified primary antibodies and peroxidase-linked secondary antibodies. Each salivary gland type showed a broadly similar staining pattern: AQP1 was localized to the capillary endothelium and myoepithelial cells; AQP3 was present in the basolateral membranes of both mucous and serous acinar cells; AQP4 was not detected; and AQP5 was expressed in the luminal and canalicular membranes of both types of acinar cell. We conclude that AQP3 and AQP5 together may provide a pathway for transcellular osmotic water flow in the formation of the primary saliva.
Lithium (Li) treatment is often associated with nephrogenic diabetes insipidus (NDI). The changes in whole kidney expression of aquaporin-1 (AQP1), -2, and -3 as well as Na-K-ATPase, type 3 Na/H exchanger (NHE3), type 2 Na-Pi cotransporter (NaPi-2), type 1 bumetanide-sensitive Na-K-2Cl cotransporter (BSC-1), and thiazide-sensitive Na-Cl cotransporter (TSC) were examined in rats treated with Li orally for 4 wk: protocol 1, high doses of Li (high Na(+) intake), and protocol 2, low doses of Li (identical food and normal Na(+) intake in Li-treated and control rats). Both protocols resulted in severe polyuria. Semiquantitative immunoblotting revealed that whole kidney abundance of AQP2 was dramatically reduced to 6% (protocol 1) and 27% (protocol 2) of control levels. In contrast, the abundance of AQP1 was not decreased. Immunoelectron microscopy confirmed the dramatic downregulation of AQP2 and AQP3, whereas AQP4 labeling was not reduced. Li-treated rats had a marked increase in urinary Na(+) excretion in both protocols. However, the expression of several major Na(+) transporters in the proximal tubule, loop of Henle, and distal convoluted tubule was unchanged in protocol 2, whereas in protocol 1 significantly increased NHE3 and BSC-1 expression or reduced NaPi-2 expression was associated with chronic Li treatment. In conclusion, severe downregulation of AQP2 and AQP3 appears to be important for the development of Li-induced polyuria. In contrast, the increased or unchanged expression of NHE3, BSC-1, Na-K-ATPase, and TSC indicates that these Na(+) transporters do not participate in the development of Li-induced polyuria.
Recent studies have demonstrated that a novel anion exchanger, pendrin, is expressed in the apical domain of type B intercalated cells in the mammalian collecting duct. The purpose of this study was 1) to determine the expression and distribution of pendrin along the collecting duct and connecting tubule of mouse and rat kidney and establish whether pendrin is expressed in the non-A-non-B intercalated cells and 2) to determine the intracellular localization of pendrin in the different populations of intercalated cells by immunoelectron microscopy. A peptide-derived affinity-purified antibody was generated that specifically recognized pendrin in immunoblots of rat and mouse kidney. Immunohistochemistry and confocal laser scanning microscopy demonstrated the presence of pendrin in apical domains of all type B intercalated cells in mouse and rat connecting tubule and collecting duct. In addition, strong pendrin immunostaining was observed in non-A-non-B intercalated cells. There was no labeling of type A intercalated cells. Immunoelectron microscopy demonstrated that pendrin was located in the apical plasma membrane and intracellular vesicles of both type B intercalated cells and non-A-non-B cells; the latter was identified by the presence of H(+)-ATPase in the apical plasma membrane. The results of this study demonstrate that both pendrin and H(+)-ATPase are expressed in the apical plasma membrane of non-A-non-B intercalated cells, suggesting that these cells are capable of both HCO and proton secretion. Furthermore, the presence of pendrin in both the apical plasma membrane and the apical intracellular vesicles of type B and non-A-non-B intercalated cells suggests that HCO secretion may be regulated by trafficking of pendrin between the two membrane compartments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.