Lithium (Li) treatment is often associated with nephrogenic diabetes insipidus (NDI). The changes in whole kidney expression of aquaporin-1 (AQP1), -2, and -3 as well as Na-K-ATPase, type 3 Na/H exchanger (NHE3), type 2 Na-Pi cotransporter (NaPi-2), type 1 bumetanide-sensitive Na-K-2Cl cotransporter (BSC-1), and thiazide-sensitive Na-Cl cotransporter (TSC) were examined in rats treated with Li orally for 4 wk: protocol 1, high doses of Li (high Na(+) intake), and protocol 2, low doses of Li (identical food and normal Na(+) intake in Li-treated and control rats). Both protocols resulted in severe polyuria. Semiquantitative immunoblotting revealed that whole kidney abundance of AQP2 was dramatically reduced to 6% (protocol 1) and 27% (protocol 2) of control levels. In contrast, the abundance of AQP1 was not decreased. Immunoelectron microscopy confirmed the dramatic downregulation of AQP2 and AQP3, whereas AQP4 labeling was not reduced. Li-treated rats had a marked increase in urinary Na(+) excretion in both protocols. However, the expression of several major Na(+) transporters in the proximal tubule, loop of Henle, and distal convoluted tubule was unchanged in protocol 2, whereas in protocol 1 significantly increased NHE3 and BSC-1 expression or reduced NaPi-2 expression was associated with chronic Li treatment. In conclusion, severe downregulation of AQP2 and AQP3 appears to be important for the development of Li-induced polyuria. In contrast, the increased or unchanged expression of NHE3, BSC-1, Na-K-ATPase, and TSC indicates that these Na(+) transporters do not participate in the development of Li-induced polyuria.
Background/Aim: In a rat model, lithium treatment is associated with polyuria and severe downregulation of aquaporin-2 (AQP2) protein in the inner medulla (IM) or in the whole kidney. However, it is not known (1) to what extent this downregulation occurs at the mRNA level; (2) whether the main sodium transporter of the nephron, Na,K-ATPase, is regulated in parallel at the mRNA level, and (3) whether lithium treatment induces zonal or segmental differences in AQP2 and Na,K-ATPase mRNA levels. Method: We examined the changes in mRNA expression levels for AQP2 and Na,K-ATPase in kidney cortex, inner stripe of the outer medulla (ISOM), and IM of rats treated with lithium orally using semiquantitative Northern blot analyses and in situ hybridization at the light and electron microscopic levels. Results: The AQP2 mRNA levels decreased significantly (p < 0.01) in lithium-treated rats to 37 ± 4% in the cortex, to 17 ± 4% in the ISOM, and to 23 ± 5% in the IM, while the Na,K-ATPase mRNA levels were not altered in the cortex, but were significantly (p < 0.05) altered in the ISOM (144 ± 15% after 10 days, but 68 ± 4% after 4 weeks) and in the IM (63 ± 8% after 10 days, but normalized after 4 weeks). In situ hybridization showed reduced levels of AQP2 mRNA in all zones of the kidney, but the Na,K-ATPase mRNA expressions were slightly decreased only in IM collecting ducts. At the ultrastructural level, principal cells in the IM collecting ducts showed slight hypertrophy, but no cell damage after 4 weeks of lithium treatment. The results demonstrate substantial downregulation of AQP2 at the mRNA level throughout the collecting duct in experimental lithium-induced nephrogenic dabetes insipidus and moderately decreased Na,K-ATPase mRNA levels in the ISOM and in the IM. Conclusion: The results suggest that decreased mRNA expressions of AQP2 and Na,K-ATPase contribute to the development of lithium-induced nephrogenic diabetes insipidus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.