Donor-specific (DST) or nonspecific blood transfusions administered before transplantation can enhance survival of vascularized allografts both in humans and animals but the immunological mechanisms of this effect remain unclear. We have analyzed the expression and the role of endogenous TGF- 1 in a model of heart allograft tolerance, induced by pregraft DST in adult rats. We reported previously that this tolerance occurs despite a strong infiltration of leukocytes into the graft that are unable to produce both Th1-and Th2-related cytokines in vivo. Allografts from DST-treated rats express high levels of TGF- 1 mRNA and active protein. This phenomenon is correlated with the rapid infiltration of leukocytes producing high amounts of TGF- 1. TGF- 1-producing cells are virtually absent among early infiltrating cells in rejected grafts but are found at a later time point. The induction of allograft tolerance in vivo is abrogated by administration of neutralizing anti-TGF- mAb. Moreover, overexpression of active TGF- 1 in heart allografts using a recombinant adenovirus leads to prolonged graft survival in unmodified recipients. Taken together, our results identify TGF- as a critical cytokine involved in the suppression of allograft rejection induced by DST and suggest that TGF- -producing regulatory cells are also involved in allograft tolerance. ( J. Clin. Invest. 1998.
Previous work on blockade of CD40-CD40 ligand interaction in mice and primates with anti-CD40 ligand mAbs has resulted in a moderate prolongation of allograft survival without the development of true allograft tolerance. In this study, we show in rats that adenovirus-mediated gene transfer of CD40Ig sequences into the graft resulted in prolonged (>200 days) expression of CD40Ig and in long-term (>300 days) survival. Recipients expressing CD40Ig displayed strongly (>90%) inhibited mixed leukocyte reactions and alloantibody production at early (days 5 and 17) and late time points (>100 day) after transplantation, but showed limited inhibition of leukocyte infiltration and cytokine production as evaluated by immunohistology at early time points (day 5). Recipients of long-surviving hearts showed donor-specific hyporesponsiveness since acceptance of second cardiac allografts was donor specific. Nevertheless, long-term allografts (>100 days) displayed signs of chronic rejection vasculopathy. Occluded vessels showed leukocyte infiltration, mainly composed of CD4+ and CD8+ cells, macrophages, and mast cells. These recipients also showed antidonor CTL activity. Recipients expressing CD40Ig did not show nonspecific immunosuppression, as they were able to mount anticognate immune responses that were partially inhibited at early time points and were normal thereafter. We conclude that gene transfer-mediated expression of CD40Ig resulted in a highly efficient inhibition of acute heart allograft rejection in rats. This treatment induced donor-specific inhibition of certain alloreactive mechanisms in the short-, but not the long-term, which resulted in long-term survival of allografts concomitant with the development of chronic rejection.
Blockade of the CD28/B7 T cell costimulatory pathway prolongs allograft survival and induces tolerance in some animal models. We analyzed the efficacy of a CTLA4Ig-expressing adenovirus in preventing cardiac allorejection in rats, the mechanisms underlying heart transplant acceptance, and whether the effects of CTLA4Ig were restricted to the graft microenvironment or were systemic. CTLA4Ig gene transfer into the myocardium allowed indefinite graft survival (>100 days vs 9 +/- 1 days for controls) in 90% of cases, whereas CTLA4Ig protein injected systemically only prolonged cardiac allograft survival (by up to 22 days). CTLA4Ig could be detected in the graft and in the serum for at least 1 year after gene transfer. CTLA4Ig gene transfer induced local intragraft immunomodulation at day 5 after transplantation, as shown by decreased expression of the IL-2R and MHC II Ags; decreased levels of mRNA encoding for IFN-gamma, inducible NO synthase, and TGF-beta; and inhibited proliferative responses of graft-infiltrating cells. Systemic immune responses were also down-modulated, as shown by the suppression of Ab production against donor alloantigens and cognate Ags, up to at least 120 days after gene transfer. Alloantigenic and mitogenic proliferative responses of graft-infiltrating cells and total splenocytes were inhibited and were not reversed by IL-2. In contrast, lymph node cells and T cells purified from splenocytes showed normal proliferation. Recipients of long-term grafts treated with adenovirus coding for CTLA4Ig showed organ and donor-specific tolerance. These data show that expression of CTLA4Ig was high and long lasting after adenovirus-mediated gene transfer. This expression resulted in down-modulation of responses against cognate Ags, efficient suppression of local and systemic allograft immune responses, and ultimate induction of donor-specific tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.