In light of the COVID-19 pandemic
situation, the separation of the primary colors of ink markers and
food coloring was performed using a simplified column chromatography
setup at home to accomplish the educational outcome of the course.
The virtual class instruction, for the students enrolled in the Organic Techniques Laboratory course, allows the understanding
of the basic principles of chromatography in a way similar to that
in the face-to-face experience. The materials proposed for conducting
the experiment are readily available at home or easily found in a
drugstore or in a grocery store. A wide variety of results were observed
where the separation of at least two primary colors was achieved by
80% of the students.
The incidence of liver diseases, such as nonalcoholic fatty liver disease and drug-induced liver injury, continues to rise and is one of the leading causes of acute hepatitis. Current trends suggest that these types of conditions will increase in the coming years. There are few drugs available for the prevention or treatment of hepatic diseases, and there is a growing need for the development of safe hepatoprotective agents. The medicinal plant, Turnera diffusa, has many ethnopharmacological uses, one of which is the production of a flavonoid named hepatodamianol, which is the principal component responsible for this plant’s hepatoprotective properties. In the present study, we describe the development and standardization of an active extract obtained from T. diffusa. We conducted nuclear magnetic resonance spectroscopy to identify hepatodamianol unambiguously in each sample. Using this extract, hepatoprotection could be demonstrated in vivo for the first time. The hepatoprotective effect did not display a significant difference in vivo when compared with silymarin used as a positive control at the same doses. Implementation of quality criteria used for standardization, such as flavonoid and hepatodamianol content, hepatoprotective activity, and absence of residual solvents, will allow future preclinical trials with this herbal drug.
Diabetes mellitus is a chronic degenerative disease that causes long-term complications and represents a serious public health problem. Turnera diffusa (damiana) is a shrub that grows throughout Mexico and is traditionally used for many illnesses including diabetes. Although a large number of plant metabolites are known, there are no reports indicating which of these are responsible for this activity, and this identification was the objective of the present work. Through bioassay-guided fractionation of a methanolic extract obtained from the aerial part of T. diffusa, teuhetenone A was isolated and identified as the main metabolite responsible for the plant’s hypoglycemic activity. Alpha-glucosidase inhibitory activity and cytotoxicity of this metabolite were determined. Hypoglycemic and antidiabetic activities were evaluated in a murine model of diabetes in vivo, by monitoring glucose levels for six hours and comparing them with levels after administering various controls. Teuhetenone A was not cytotoxic at the tested concentrations, and did not show inhibitory activity in the glucosidase test, and the in vivo assays showed a gradual reduction in glucose levels in normoglycemic and diabetic mice. Considering these results, we suggest that teuhetenone A has potential as an antidiabetic compound, which could be further submitted to preclinical assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.