We show that flow cytometric analysis of nodal tissue is sensitive and reliable in identifying metastases of OSCC. Flow cytometry is inexpensive and fast, providing a possibility of perioperative diagnostics and immediate treatment planning.
Importance: Surgery remains the gold standard in cholesteatoma treatment. However, the rate of recurrence is significant and the development of new nonsurgical treatment alternatives is warranted. One of the possible molecular pathways to target is the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Objective: To investigate the JAK/STAT pathway in the middle ear mucosa in patients with acquired cholesteatoma compared with middle ear mucosa from healthy controls. Design: Case-control study. Setting: Linköping University Hospital, Sweden, and Karolinska Institutet, Stockholm, Sweden. Sampling period: February 2011 to December 2016. Participants: Middle ear mucosa from 26 patients with acquired cholesteatoma undergoing tympanoplasty and mastoidectomy, and 27 healthy controls undergoing translabyrinthine surgery for vestibular schwannoma or cochlear implantation was investigated. Main Outcomes/Measures: The expression of Interleukin-7 receptor alpha, JAK1, JAK2, JAK3, STAT5A, STAT5B, and suppressor of cytokine signaling-1 (SOCS1) were quantified using quantitative polymerase chain reaction. In addition, expression level of cyclin D2, transforming growth factor beta 1, thymic stromal lymphopoietin, CD3, and CD19 was evaluated. Results: In cholesteatoma-adjacent mucosa, SOCS1 was significantly upregulated (p= 0.0003) compared with healthy controls, whereas STAT5B was significantly downregulated (p = 0.0006). The expression of JAK1, JAK2, JAK3, and STAT5A did not differ significantly between groups. Conclusions and Relevance: To the best of our knowledge, this is the first article reporting dysregulation of the JAK/STAT pathway in cholesteatoma-adjacent mucosa. The main finding is that important players of the aforementioned pathway are significantly altered, namely SOCS1 is upregulated and STAT5B is downregulated compared with healthy controls.
The middle ear is a small and hard to reach compartment, limiting the amount of tissue that can be extracted and the possibilities for studying the molecular mechanisms behind diseases like cholesteatoma. In this paper 14 reference gene candidates were evaluated in the middle ear mucosa of cholesteatoma patients and two different control tissues. ACTB and GAPDH were shown to be the optimal genes for the normalisation of target gene expression when investigating middle ear mucosa in multiplex qPCR analysis. Validation of reference genes using c-MYC expression confirmed the suitability of ACTB and GAPDH as reference genes and showed an upregulation of c-MYC in middle ear mucosa during cholesteatoma. The occurrence of participants of the innate immunity, TLR2 and TLR4, were analysed in order to compare healthy middle ear mucosa to cholesteatoma. Analysis of TLR2 and TLR4 showed variable results depending on control tissue used, highlighting the importance of selecting relevant control tissue when investigating causes for disease. It is our belief that a consensus regarding reference genes and control tissue will contribute to the comparability and reproducibility of studies within the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.