Valproic acid, a branched short-chain fatty acid, has numerous action mechanisms which turn it into a broad spectrum anticonvulsant drug and make its use possible in some other pathologies such as bipolar disorder. It is extensively metabolized in liver, representing β-oxidation in the mitochondria one of its main metabolic route (40%). Carnitine is responsible for its entry into the mitochondria as any other fatty acid. Long-term high-dose VPA therapy or acute VPA overdose induces carnitine depletion, resulting in high levels of ammonia in blood. As a high correlation between salivary valproic acid levels and plasma ultrafiltrate levels was found in humans, saliva becomes a promising monitoring fluid in order to study valproic acid pharmacokinetics and its toxic effect. Extended-release (twice daily) formulations of valproic acid or carnitine supplementation are the proposed two therapeutic strategies in order to reverse hyperammonemia.
Clozapine (CZP) is an atypical antipsychotic agent commonly used in the treatment of schizophrenia. It is metabolized primarily by CYP1A2 enzyme, yielding a pharmacologically active metabolite, norclozapine (NCZP). Significant intra- and interindividual pharmacokinetic (PK) variability for CZP and NCZP has been observed in routine therapeutic drug monitoring. So the goal of this study was to evaluate the magnitude and variability of concentration exposure to CZP and its active metabolite NCZP on pharmacokinetic parameters in Uruguayan patients with schizophrenia with a focus on covariates such as cigarette smoking, age, sex, caffeine consumption, brands available of CZP, and comedication using population PK (PPK) modeling methodologies. Patients with a diagnosis of schizophrenia treated with brand-name CZP (Leponex®) for more than a year were included in the study. Then these patients were switched to the similar brand of CZP (Luverina®). Morning predose blood samples for determination of CZP and NCZP using a HPLC system equipped with a UV detector were withdrawn on both occasions at steady state and under the same comedication. Ninety-eight patients, 22 women and 76 men, took part in the study. Mean ± standard deviation for CZP and NCZP concentration was 421 ± 262 ng/mL and 275 ± 180 ng/mL, respectively. After covariate evaluation, only smoking status remained significant in CZP apparent clearance, inducing a mean increment of 32% but with no clinical impact. The results obtained with the two brands of CZP should ensure comparable efficacy and tolerability with the clinical use of either product. Smoking was significantly associated with a lower exposure to CZP due to higher clearance. The results obtained with the two brands commercialized in our country hint a bioequivalence scenario in the clinical setting.
Blood carnitine and/or acetylcarnitine deficiencies are postulated in the literature as possible causes of higher ammonia levels. The aim of this study was to investigate if the use of valproic acid, the age of the patients, or certain central nervous system pathologies can cause carnitine and/or acetylcarnitine deficiency leading to increased ammonia levels. Three groups of patients were studied: (A) epileptic under phenytoin monotherapy (n = 31); (B) with bipolar disorder under valproic acid treatment (n = 28); (C) elderly (n = 41). Plasma valproic acid and blood carnitine and acyl carnitine profiles were determined using a validated HPLC and LC-MS/MS method, respectively. Blood ammonia concentration was determined using an enzymatic automated assay. Higher ammonia levels were encountered in patients under valproic acid treatment and in the elderly. This may be due to the lower carnitine and/or acetylcarnitine found in these patients. Patients with controlled seizures had normal carnitine and acetylcarnitine levels. Further studies are necessary in order to conclude if the uncontrolled bipolar disorder could be the cause of higher carnitine and/or acetylcarnitine levels.
Choosing an appropriate treatment for chronic pain remains problematic, and despite the available medication for its treatment, still, many patients complain about pain and appeal to the use of cannabis derivatives for pain control. However, few data have been provided to clinicians about the pharmacokinetic drug-drug interactions of cannabinoids with other concomitant administered medications. Therefore, the aim of this brief review is to assess the interactions between cannabinoids and pain medication through drug transporters (ATP-binding cassette superfamily members) and/or metabolizing enzymes (cytochromes P450 and glucuronyl transferases).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.