Fungi and bacteria are key agents in plant litter decomposition in freshwater ecosystems. However, the specific roles of these two groups and their interactions during the decomposition process are unclear. We compared the growth and patterns of degradative enzymes expressed by communities of bacteria and fungi grown separately and in coexistence on Phragmites leaves. The two groups displayed both synergistic and antagonistic interactions. Bacteria grew better together with fungi than alone. In addition, there was a negative effect of bacteria on fungi, which appeared to be caused by suppression of fungal growth and biomass accrual rather than specifically affecting enzyme activity. Fungi growing alone had a high capacity for the decomposition of plant polymers such as lignin, cellulose, and hemicellulose. In contrast, enzyme activities were in general low when bacteria grew alone, and the activity of key enzymes in the degradation of lignin and cellulose (phenol oxidase and cellobiohydrolase) was undetectable in the bacteria-only treatment. Still, biomass-specific activities of most enzymes were higher in bacteria than in fungi. The low total activity and growth of bacteria in the absence of fungi in spite of apparent high enzymatic efficiency during the degradation of many substrates suggest that fungi provide the bacteria with resources that the bacteria were not able to acquire on their own, most probably intermediate decomposition products released by fungi that could be used by bacteria.
Mille -Lindblom, C., Fischer, H. and Tranvik, L. J. 2006. Antagonism between bacteria and fungi: substrate competition and a possible tradeoff between fungal growth and tolerance towards bacteria. Á/ Oikos 113: 233 Á/242. Bacteria and fungi often share a common substrate, and their spatial proximity in many environments has lead to either synergistic or antagonistic interactions. In this paper, the interaction of bacterial and fungal decomposers from an aquatic environment was studied. We found indications of a tradeoff between fungal growth and tolerance towards bacteria. Fungal strains growing best in absence of bacteria were most severely affected by bacterial presence, while those less suppressed during co-existence with bacteria had lower maximal growth rates in bacterial absence. Additionally, we show that the antagonism between bacteria and fungi is connected to competition for substrate, but that this competition can be drastically altered if fungi are given an opportunity to establish before inoculation of bacteria. Established fungi out-competed bacteria, and gained higher biomass than in simultaneously inoculated treatments with higher substrate concentrations.
Bacterial and fungal decomposers of aquatic plant litter may exhibit either synergistic or antagonistic interactions, which are likely to influence microbial growth as well as the decomposition of litter and, eventually, the carbon metabolism of aquatic systems. To elucidate such interactions, we inoculated decomposing Phragmites culms in microcosms with fungal isolates and with natural communities of bacteria and fungi in different combinations. The development of fungal and bacterial biomass and the carbon dynamics were studied during several months of degradation. The results show a bilateral antagonistic relationship between bacteria and fungi. After 3 months, fungal biomass accumulation was approximately 12 times higher in the absence than in the presence of bacteria. Bacterial biomass accumulation was about double in the absence of fungi compared to when fungi were present. Similar interactions developed between a natural assemblage of bacteria and five different fungal strains isolated from Phragmites litter (three identified hyphomycetes and two unidentified strains). Despite the great difference in biomass development between the treatments, the carbon metabolism was similar regardless of whether fungi and/or bacteria were present alone or in coexistence. We suggest that the antagonism between bacteria and fungi is an important controlling factor for microbial colonization and growth on aquatic plant litter.
Summary 1. The aim of this study was to assess the effects of different nitrogen (N) to phosphorus (P) loading ratios on phytoplankton community composition and primary production in a naturally eutrophic lake. Furthermore, the sources of N fuelling primary production were estimated using 15N stable isotope tracers. 2. A mesocosm experiment was performed with the same amount of P added to all mesocosms (similar to internal loading rates) but with a range of N additions (0–86 μm N), resulting in a gradient of N : P supply ratios. 3. Low N : P supply ratios resulted in a significant shift in the phytoplankton assemblage to a community dominated by N‐fixing cyanobacteria and a supply of atmospheric N2 estimated to be up to 60% of total supply. 4. The N : P loading ratio had no significant effect on primary production, total nitrogen (TN) concentration or particulate N concentration. 5. Our results imply that a reduced N : P ratio of the nutrient load does not necessarily result in a lower TN concentration and downstream N export due to compensation by N‐fixing cyanobacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.