Calcium is an essential element that plays numerous biological functions in the human body, of which one of the most important is skeleton mineralization. Bone is a mineralized connective tissue in which calcium represents the major component, conferring bone strength and structure. Proper dietary calcium intake is important for bone development and metabolism, and its requirement can vary throughout life. The mineral composition of drinking water is becoming relevant in the modulation of calcium homeostasis. In fact, calcium present in mineral drinking waters is an important quantitative source of calcium intake. This, together with its excellent bioavailability, contributes to the maintenance of the bone health. This article aims to examine studies that assessed the bioavailability of the calcium contained in calcium-rich mineral waters and their impact on bone health, including original data collected in a recent study in humans.
This study comprised a comprehensive analysis of the glutathione (GSH) redox system during osteogenic differentiation in human osteoblast-like SaOS-2 cells. For the first time, a clear relationship between expression of specific factors involved in bone remodeling and the changes in the GSH/ oxidized GSH (GSSG) redox couple induced during the early phases of the differentiation and mineralization process is shown. The findings show that the time course of differentiation is characterized by a decrease in the GSH/GSSG ratio, and this behavior is also related to the expression of osteoclastogenic markers. Maintenance of a high GSH/GSSG ratio due to GSH exposure in the early phase of this process increases mRNA levels of osteogenic differentiation markers and mineralization. Conversely, these events are decreased by a low GSH/GSSG ratio in a reversible manner. Redox regulation of runt-related transcription factor-2 (RUNX-2) activation through phosphorylation is shown. An inverse relationship between RUNX-2 activation and extracellular signal-regulated kinases related to GSH redox potential is observed. The GSH/GSSG redox couple also affects osteoclastogenesis, mainly through osteoprotegerin down-regulation with an increase in the ratio of receptor activator of NF-jB ligand to osteoprotegerin and vice versa. No redox regulation of receptor activator of NF-jB ligand expression was found. These results indicate that the GSH/GSSG redox couple may have a pivotal role in bone remodeling and bone redox-dysregulated diseases. They suggest therapeutic use of compounds that are able to modulate not just the GSH level but the intracellular redox system through the GSH/GSSG redox couple.
Bone tissue engineering represents one of the most challenging emergent fields for scientists and clinicians.
Development of tools to be used for in vivo bone tissue regeneration focuses on cellular models and differentiation processes. In searching for all the optimal sources, adipose tissue-derived mesenchymal stem cells (hADSCs or preadipocytes) are able to differentiate into osteoblasts with analogous characteristics to bone marrow mesenchymal stem cells, producing alkaline phosphatase (ALP), collagen, osteocalcin, and calcified nodules, mainly composed of hydroxyapatite (HA). The possibility to influence bone differentiation of stem cells encompasses local and systemic methods, including the use of drugs administered systemically. Among the latter, strontium ranelate (SR) represents an interesting compound, acting as an uncoupling factor that stimulates bone formation and inhibits bone resorption. The aim of our study was to evaluate the in vitro effects of a wide range of strontium (Sr2+) concentrations on proliferation, ALP activity, and mineralization of a novel finite clonal hADSCs cell line, named PA20-h5. Sr2+ promoted PA20-h5 cell proliferation while inducing the increase of ALP activity and gene expression as well as HA production during in vitro osteoinduction. These findings indicate a role for Sr2+ in supporting bone regeneration during the process of skeletal repair in general, and, more specifically, when cell therapies are applied.
Osteoporosis is characterized by the alteration of bone homeostasis due to an imbalance between osteoclastic bone resorption and osteoblastic bone formation. Estrogen deficiency causes bone loss and postmenopausal osteoporosis, the pathogenesis of which also involves oxidative stress, inflammatory processes, and the dysregulation of the expression of microRNAs (miRNAs) that control gene expression at post-transcriptional levels. Oxidative stress, due to an increase in reactive oxygen species (ROS), proinflammatory mediators and altered levels of miRNAs enhance osteoclastogenesis and reduce osteoblastogenesis through mechanisms involving the activation of MAPK and transcription factors. The present review summarizes the principal molecular mechanisms involved in the role of ROS and proinflammatory cytokines on osteoporosis. Moreover, it highlights the interplay among altered miRNA levels, oxidative stress, and an inflammatory state. In fact, ROS, by activating the transcriptional factors, can affect miRNA expression, and miRNAs can regulate ROS production and inflammatory processes. Therefore, the present review should help in identifying targets for the development of new therapeutic approaches to osteoporotic treatment and improve the quality of life of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.