Over-representation analysis (ORA) is one of the commonest pathway analysis approaches used for the functional interpretation of metabolomics datasets. Despite the widespread use of ORA in metabolomics, the community lacks guidelines detailing its best-practice use. Many factors have a pronounced impact on the results, but to date their effects have received little systematic attention. Using five publicly available datasets, we demonstrated that changes in parameters such as the background set, differential metabolite selection methods, and pathway database used can result in profoundly different ORA results. The use of a non-assay-specific background set, for example, resulted in large numbers of false-positive pathways. Pathway database choice, evaluated using three of the most popular metabolic pathway databases (KEGG, Reactome, and BioCyc), led to vastly different results in both the number and function of significantly enriched pathways. Factors that are specific to metabolomics data, such as the reliability of compound identification and the chemical bias of different analytical platforms also impacted ORA results. Simulated metabolite misidentification rates as low as 4% resulted in both gain of false-positive pathways and loss of truly significant pathways across all datasets. Our results have several practical implications for ORA users, as well as those using alternative pathway analysis methods. We offer a set of recommendations for the use of ORA in metabolomics, alongside a set of minimal reporting guidelines, as a first step towards the standardisation of pathway analysis in metabolomics.
Background Single sample pathway analysis (ssPA) transforms molecular level omics data to the pathway level, enabling the discovery of patient-specific pathway signatures. Compared to conventional pathway analysis, ssPA overcomes the limitations by enabling multi-group comparisons, alongside facilitating numerous downstream analyses such as pathway-based machine learning. While in transcriptomics ssPA is a widely used technique, there is little literature evaluating its suitability for metabolomics. Here we provide a benchmark of established ssPA methods (ssGSEA, GSVA, SVD (PLAGE), and z-score) alongside the evaluation of two novel methods we propose: ssClustPA and kPCA, using semi-synthetic metabolomics data. We then demonstrate how ssPA can facilitate pathway-based interpretation of metabolomics data by performing a case-study on inflammatory bowel disease mass spectrometry data, using clustering to determine subtype-specific pathway signatures. Results While GSEA-based and z-score methods outperformed the others in terms of recall, clustering/dimensionality reduction-based methods provided higher precision at moderate-to-high effect sizes. A case study applying ssPA to inflammatory bowel disease data demonstrates how these methods yield a much richer depth of interpretation than conventional approaches, for example by clustering pathway scores to visualise a pathway-based patient subtype-specific correlation network. We also developed the sspa python package (freely available at https://pypi.org/project/sspa/), providing implementations of all the methods benchmarked in this study. Conclusion This work underscores the value ssPA methods can add to metabolomic studies and provides a useful reference for those wishing to apply ssPA methods to metabolomics data.
Single sample pathway analysis (ssPA) transforms molecular level omics data to the pathway level, enabling the discovery of patient-specific pathway signatures. Compared to conventional pathway analysis, ssPA overcomes the limitations by enabling multi-group comparisons, alongside facilitating numerous downstream analyses such as pathway-based machine learning. While in transcriptomics ssPA is a widely used technique, there is little literature evaluating its suitability for metabolomics. Here we provide a thorough benchmark of established ssPA methods (ssGSEA, GSVA, SVD (PLAGE), and z-score) using semi-synthetic metabolomics data, alongside the evaluation of two novel methods we propose: ssClustPA and kPCA. While GSEA-based and z-score methods outperformed the others in terms of recall, clustering/dimensionality reduction-based methods provided higher precision at moderate-to-high effect sizes. A case study applying ssPA to inflammatory bowel disease demonstrates how these methods yield a much richer depth of interpretation than conventional approaches, for example by clustering pathway scores to visualise a pathway-based patient subtype-specific correlation network. We also developed the sspa python package (freely available at https://pypi.org/project/sspa/), providing implementations of all the methods benchmarked in this study. This work underscores the value ssPA methods can add to metabolomic studies and provides a useful reference for those wishing to apply ssPA methods to metabolomics data.
Over-representation analysis (ORA) is one of the commonest pathway analysis approaches used for the functional interpretation of metabolomics datasets. Despite the widespread use of ORA in metabolomics, the community lacks guidelines detailing its best-practice use. Many factors have a pronounced impact on the results, but to date their effects have received little systematic attention in the field. We developed in-silico simulations using five publicly available datasets and illustrated that changes in parameters, such as the background set, differential metabolite selection methods, and pathway database choice, could all lead to profoundly different ORA results. The use of a non-assay-specific background set, for example, resulted in large numbers of false-positive pathways. Pathway database choice, evaluated using three of the most popular metabolic pathway databases: KEGG, Reactome, and BioCyc, led to vastly different results in both the number and function of significantly enriched pathways. Metabolomics data specific factors, such as reliability of compound identification and assay chemical bias also impacted ORA results. Simulated metabolite misidentification rates as low as 4% resulted in both gain of false-positive pathways and loss of truly significant pathways across all datasets. Our results have several practical implications for ORA users, as well as those using alternative pathway analysis methods. We offer a set of recommendations for the use of ORA in metabolomics, alongside a set of minimal reporting guidelines, as a first step towards the standardisation of pathway analysis in metabolomics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.