In an effort to elucidate the molecular mechanisms underlying cerebral vascular alteration after stroke, the authors measured the spatial and temporal profiles of blood-brain barrier (BBB) leakage, angiogenesis, vascular endothelial growth factor (VEGF), associated receptors, and angiopoietins and receptors after embolic stroke in the rat. Two to four hours after onset of ischemia, VEGF mRNA increased, whereas angiopoietin 1 (Ang 1) mRNA decreased. Three-dimensional immunofluorescent analysis revealed spatial coincidence between increases of VEGF immunoreactivity and BBB leakage in the ischemic core. Two to 28 days after the onset of stroke, increased expression of VEGF/VEGF receptors and Ang/Tie2 was detected at the boundary of the ischemic lesion. Concurrently, enlarged and thin-walled vessels were detected at the boundary of the ischemic lesion, and these vessels developed into smaller vessels via sprouting and intussusception. Three-dimensional quantitative analysis of cerebral vessels at the boundary zone 14 days after ischemia revealed a significant (P < 0.05) increase in numbers of vessels (n = 365) compared with numbers (n = 66) in the homologous tissue of the contralateral hemisphere. Furthermore, capillaries in the penumbra had a significantly smaller diameter (4.8 +/- 2.0 microm) than capillaries (5.4 +/- 1.5 microm) in the homologous regions of the contralateral hemisphere. Together, these data suggest that acute alteration of VEGF and Ang 1 in the ischemic core may mediate BBB leakage, whereas upregulation of VEGF/VEGF receptors and Ang/Tie2 at the boundary zone may regulate neovascularization in ischemic brain.
Background and Purpose-An objective of therapeutic intervention after cerebral ischemia is to promote improved functional outcome. Improved outcome may be associated with a reduction of the volume of cerebral infarction and the promotion of cerebral plasticity. In the developing brain, neuronal growth is concomitant with expression of particular proteins, including microtubule-associated protein 2 (MAP-2), growth-associated protein 43 (GAP-43), and cyclin D1.In the present study we measured the expression of select proteins associated with neurite damage and plasticity (MAP-2 and GAP-43) as well as cell cycle (cyclin D1) after induction of focal cerebral ischemia in the rat. Methods-Brains from rats (nϭ28) subjected to 2 hours of middle cerebral artery occlusion and 6 hours, 12 hours, and 2, 7, 14, 21, and 28 days (nϭ4 per time point) of reperfusion and control sham-operated (nϭ3) and normal (nϭ2) rats were processed by immunohistochemistry with antibodies raised against MAP-2, GAP-43, and cyclin D1. Double staining of these proteins for cellular colocalization was also performed. Results-Loss of immunoreactivity of both MAP-2 and GAP-43 was observed in most damaged neurons in the ischemic core. In contrast, MAP-2, GAP-43, and cyclin D1 were selectively increased in morphologically intact or altered neurons localized to the ischemic core at an early stage (eg, 6 hours) of reperfusion and in the boundary zone to the ischemic core (penumbra) during longer reperfusion times.
Conclusions-The
The mechanisms underlying cerebral microvascular perfusion deficit resulting from occlusion of the middle cerebral artery (MCA) require elucidation. We, therefore, tested the hypothesis that intravascular fibrin deposition in situ directly obstructs cerebral microcirculation and that local changes in type 1 plasminogen activator inhibitor (PAI-1) gene expression contribute to intravascular fibrin deposition after embolic MCA occlusion. Using laser-scanning confocal microscopy (LSCM) in combination with immunofluorescent staining, we simultaneously measured in three dimensions the distribution of microvascular plasma perfusion deficit and fibrin(ogen) immunoreactivity in a rat model of focal cerebral embolic ischemia (n ϭ 12). In addition, using in situ hybridization and immunostaining, we analyzed expression of PAI-1 in ischemic brain (n ϭ 13). A significant ( p Ͻ 0.05) reduction of cerebral microvascular plasma perfusion accompanied a significant ( p Ͻ 0.05) increase of intravascular and extravascular fibrin deposition in the ischemic lesion. Microvascular plasma perfusion deficit and fibrin deposition expanded concomitantly from the subcortex to the cortex during 1 and 4 hr of embolic MCA occlusion. Threedimensional analysis revealed that intravascular fibrin deposition directly blocks microvascular plasma perfusion. Vascular plugs contained erythrocytes, polymorphonuclear leukocytes, and platelets enmeshed in fibrin. In situ hybridization demonstrated induction of PAI-1 mRNA in vascular endothelial cells in the ischemic region at 1 hr of ischemia. PAI-1 mRNA significantly increased at 4 hr of ischemia. Immunohistochemical staining showed the same pattern of increased PAI-1 antigen in the endothelial cells. These data demonstrate, for the first time, that progressive intravascular fibrin deposition directly blocks cerebral microvascular plasma perfusion in the ischemic region during acute focal cerebral embolic ischemia, and upregulation of the PAI-1 gene in the ischemic lesion may foster fibrin deposition through suppression of fibrinolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.