Secretions of male accessory glands contain a variety of bioactive molecules. When transferred during mating, these molecules exert wide-ranging effects on female reproductive activity and they improve the male's chances of siring a significant proportion of the female's offspring. The accessory gland secretions may affect virtually all aspects of the female's reproductive activity. The secretions may render her unwilling or unable to remate for some time, facilitating sperm storage and ensuring that any eggs laid will be fertilized by that male's sperm. They may stimulate an increase in the number and rate of development of eggs and modulate ovulation and/or oviposition. Antimicrobial agents in the secretions ensure that the female reproductive tract is a hospitable environment during sperm transfer. In a few species the secretions include noxious chemicals. These are sequestered by developing eggs that are thereby protected from predators and pathogens when laid.
The peritrophic matrix (PM) is a chitin and glycoprotein layer that lines the invertebrate midgut. Although structurally different, it is functionally similar to the mucous secretions of the vertebrate digestive tract. The PM is a physical barrier, protecting the midgut epithelium from abrasive food particles, digestive enzymes, and pathogens infectious per os. It is also a biochemical barrier, sequestering and, in some cases, inactivating ingested toxins. Finally, the PM compartmentalizes digestive processes, allowing for efficient nutrient acquisition and reuse of hydrolytic enzymes. The PM consists of an organized lattice of chitin fibrils held together by chitin binding proteins. Glycans fill the interstitial spaces, creating a molecular sieve, the properties of which are dependent on the immediate ion content and pH. In this review, we have integrated recent structural and functional information to create a holistic model for the PM. We also show how this information may generate novel technologies for use in insect pest management.
Abstract:The polymerase chain reaction (PCR) revolutionized the field of diagnostics, and today it has routine applications in medical, veterinary, forensic and botanical sciences. The fields of biological control and insect pest management have generally been slow to adopt PCR-based diagnostics in comparison with other fields of science. However, there has been increasing interest in the use of molecular diagnostic tools in arthropod biological control. In applied entomology, molecular techniques have generally been used for insect identification and systematics; however, PCR-based techniques are increasingly becoming recognized as valuable tools in ecological studies. Here, we review research that has used PCR-based techniques for parasitoid and predator/prey identification and detection, and place these studies in the context of their contributions to biological control of arthropods. The status and future directions of diagnostic molecular markers in applied entomology and insect pest management are also discussed.
One- and two-dimensional gel electrophoresis coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify cDNA encoding a chitin deacetylase (McCDA1) and three insect intestinal lipases (McIIL1, McIIL2 and McIIL3) associated with the Mamestra configurata (bertha armyworm) peritrophic matrix. Recombinant McCDA1 was active and chitin deacetylase activities were detected in the midgut. McCDA1 and the McIIL genes were expressed exclusively in the midgut; however, McCDA1 and McIIL2 were expressed in all larval stages, whereas McIIL1 was expressed mainly in feeding larvae and McIIL3 primarily during the moult.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.