In this paper we are interested in the dynamics and numerical treatment of a rolling disk on a flat support. The objective of the paper is to develop a numerical model which is able to simulate the dynamics of a rolling disk taking into account various kinds a friction models (resistance against sliding, pivoting and rolling). A mechanical model of a rolling disk is presented in the framework of Non-smooth Dynamics and Convex Analysis. In an analytical study, approximations are derived for the energy decay of the system during the final stage of the motion for various kinds of frictional dissipation models. Finally, the numerical and analytical results are discussed and compared with experimental results available in literature.
Le cadre de cette étude est celui du calcul de l'évolution dynamique d'un système de solides tridimensionnels rigides, soumis à des liaisons unilatérales de contact avec frottement sec. On propose une formulation exacte (respect des lois de contact et de frottement sec) du problème posé à un instant donné, de la prédiction pour le mouvement subséquent (supposé régulier), de l'accélération du système et des statuts de contact. Une méthode numérique pour résoudre ce type de problème non linéaire est présentée. Notre approche fait ensuite l'objet d'une validation dans un cas simple multi-contact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.