We investigate the sample complexity of Hamiltonian simulation: how many copies of an unknown quantum state are required to simulate a Hamiltonian encoded by the density matrix of that state? We show that the procedure proposed by Lloyd, Mohseni, and Rebentrost [Nat. Phys., 10(9):631-633, 2014] is optimal for this task. We further extend their method to the case of multiple input states, showing how to simulate any Hermitian polynomial of the states provided. As applications, we derive optimal algorithms for commutator simulation and orthogonality testing, and we give a protocol for creating a coherent superposition of pure states, when given sample access to those states. We also show that this sample-based Hamiltonian simulation can be used as the basis of a universal model of quantum computation that requires only partial swap operations and simple single-qubit states.
Normalizer circuits [1,2] are generalized Clifford circuits that act on arbitrary finite-dimensional systems H d1 ⊗ • • •⊗ H dn with a standard basis labeled by the elements of a finite Abelian group G = Z d1 × • • • × Z dn . Normalizer gates implement operations associated with the group G and can be of three types: quantum Fourier transforms, group automorphism gates and quadratic phase gates. In this work, we extend the normalizer formalism [1,2] to infinite dimensions, by allowing normalizer gates to act on systems of the form H ⊗a Z : each factor H Z has a standard basis labeled by integers Z, and a Fourier basis labeled by angles, elements of the circle group T. Normalizer circuits become hybrid quantum circuits acting both on continuous-and discrete-variable systems. We show that infinite-dimensional normalizer circuits can be efficiently simulated classically with a generalized stabilizer formalism for Hilbert spaces associated with groups of the form Z a × T b × Z d1 × • • • × Z dn . We develop new techniques to track stabilizer-groups based on normal forms for group automorphisms and quadratic functions. We use our normal forms to reduce the problem of simulating normalizer circuits to that of finding general solutions of systems of mixed real-integer linear equations [3] and exploit this fact to devise a robust simulation algorithm: the latter remains efficient even in pathological cases where stabilizer groups become infinite, uncountable and noncompact. The techniques developed in this paper might find applications in the study of fault-tolerant quantum computation with superconducting qubits [4,5].
Variational quantum algorithms are ubiquitous in applications of noisy intermediate-scale quantum computers. Due to the structure of conventional parametrized quantum gates, the evaluated functions typically are finite Fourier series of the input parameters. In this work, we use this fact to derive new, general parameter-shift rules for single-parameter gates, and provide closed-form expressions to apply them. These rules are then extended to multi-parameter quantum gates by combining them with the stochastic parameter-shift rule. We perform a systematic analysis of quantum resource requirements for each rule, and show that a reduction in resources is possible for higher-order derivatives. Using the example of the quantum approximate optimization algorithm, we show that the generalized parameter-shift rule can reduce the number of circuit evaluations significantly when computing derivatives with respect to parameters that feed into many gates. Our approach additionally reproduces reconstructions of the evaluated function up to a chosen order, leading to known generalizations of the Rotosolve optimizer and new extensions of the quantum analytic descent optimization algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.