Nano-sized a-MnO 2 nanorods doped with Co or Ru were directly synthesized using a continuous hydrothermal synthesis process (production rate 10 g h À1 ) and investigated as relatively inexpensive (due to the small Ru content) bifunctional catalysts for both the Oxygen Reduction Reaction (ORR) and Oxygen Evolution Reaction (OER). The materials were extensively characterized using a range of analytical methods; these including Extended X-Ray Absorption Fine Structure (EXAFS) spectroscopy measurements, which was accompanied by density functional theory studies, in order to elucidate the role of dopants in a-MnO 2 structure. Electrochemical ORR and OER investigations of the as-prepared doped a-MnO 2 nanomaterials were compared to more expensive Pt/C or RuO 2 catalysts. The doped manganese oxide nanomaterials were used as bifunctional catalysts in the positive electrode of zinc air batteries (with oversized zinc metal negative electrode and limited density of discharge window) and displayed excellent performance (the overpotential was 0.77 and 0.68 V for a-MnO 2 modified with 7.6 at% Co and 9.4 at% Ru, respectively). Overall, as a result of doping, this study achieved improved bifunctional catalytic activities of metal oxide catalysts, which was comparable to more expensive alternatives.[a] M.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.