Protein tyrosine phosphatase 1B (PTP1B) is an enzyme that downregulates the insulin receptor. Inhibition of PTP1B is expected to improve insulin action, and the design of small molecule PTP1B inhibitors to treat type II diabetes has received considerable attention. In this work, NMR-based screening identified a nonselective competitive inhibitor of PTP1B. A second site ligand was also identified by NMR-based screening and then linked to the catalytic site ligand by rational design. X-ray data confirmed that the inhibitor bound with the catalytic site in the native, "open" conformation. The final compound displayed excellent potency and good selectivity over many other phosphatases. The modular approach to drug design described in this work should be applicable for the design of potent and selective inhibitors of other therapeutically relevant protein tyrosine phosphatases.
Successful drug discovery requires the optimization of a large number of variables ranging from strictly physicochemical parameters such as molecular weight to more complex parameters related to toxicity and bioavailability. Presently, structure-based methodologies influence many aspects of the drug discovery process from lead discovery to the final preclinical characterization. However, critical biological issues along the path to the market have diminished the impact and power of this methodology. The physicochemical properties of the novel chemical entities designed and guided by structural methods have become the subject of intense scrutiny from lead discovery to drug candidate. The idea of ligand efficiency (binding energy/non-hydrogen atoms) has recently emerged as a useful guide to optimize fragment and lead selection in the discovery process. More generalized concepts of ligand efficiency, related to efficiency per dalton and per unit of polar surface area, have also been introduced and will be discussed in the broader context. Preliminary results and trends obtained using ligand efficiencies as guides are reviewed and their future application to guide drug discovery will be discussed, as well as their integration into the structure-based drug design methods to make them more effective and numerically robust.
X-ray diffraction studies reveal that the polypeptide chain of the southern bean mosaic virus protein subunit has a fold closely similar to the shell domain of tomato bushy stunt virus. The protruding domain of tomato bushy stunt virus is absent in southern bean mosaic virus. The tertiary structure observed in these viruses may be particularly suitable for the formation of the protein coat in small, spherical, RNA-containing, plant viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.