Elucidation of epithelial transport across transcellular or paracellular pathways promises to advance the present understanding of ion transport and enables regulation of cell junctions critical to the cell and molecular biology of the epithelium. Here we demonstrate a new instrumental technique potentiometric scanning ion conductance microscopy (P-SICM) that utilizes a nanoscale pipette to differentiate paracellular and transcellular transport processes at high spatial resolution. The technique is validated for well-defined polymer membranes and then employed to study wild type and claudin-deficient mutants of Madin-Darby Canine Kidney strain II (MDCKII) cells. Paracellular permeabilities conferred by claudin-2 are captured by P-SICM which demonstrates the utility to monitor apparent conductance at subcellular levels.
In this review, we describe measurements and applications of interest to the analytical community that makes use of simple nanopipettes. Fabricated by applying heat during the separation of a glass capillary, nanopipettes provide a route for nanoscale studies of ion transport and for development of chemical and biochemical sensors. When mounted on a translation stage, nanopipettes also enable unique modes of imaging and material deposition. These facets of nanopipette research, as well as some of the unique properties of nanopipettes, will be discussed.
We report scanning electrochemical microscopy-scanning ion conductance microscopy (SECM-SICM) experiments that describe transport of redox active molecules which emanate from single pores of a track-etch membrane. Experiments are performed with electrodes which consist of a thin gold layer deposited on one side of a nanopipet. Subsequent insulation of the electrode with parylene results in a hybrid electrode for SECM-SICM measurements. Electrode fabrication is straightforward and highly parallel. For image collection, ionic current measured at the nanopipet both controls the position of the electrode with respect to the membrane surface and reports the local conductance in the vicinity of the nanopipet, while faradaic current measured at the Au electrode reports the presence of redox-active molecules. Application of a transmembrane potential difference affords additional control over migration of charged species across the membrane.
We report a strategy for fabrication of sub-micron, multifunctional carbon electrodes and application of these electrodes as probes for scanning electrochemical microscopy (SECM) and scanning ion conductance microscopy (SICM). The fabrication process utilized chemical vapor deposition of parylene, followed by thermal pyrolysis to form conductive carbon and then further deposition of parylene to form an insulation layer. To achieve well-defined electrode geometries, two methods of electrode exposure were utilized. In the first method, carbon probes were masked in polydimethylsiloxane (PDMS) to obtain a cone-shaped electrode. In the second method, the electrode area was exposed via milling with a focused ion beam (FIB) to reveal a carbon ring electrode, carbon ring/platinum disk electrode, or carbon ring/nanopore electrode. Carbon electrodes were batch fabricated (~35/batch) through the vapor deposition process and were characterized with scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and cyclic voltammetry (CV) measurements. Additionally, Raman spectroscopy was utilized to examine the effects of Ga(+) ion implantation, a result of FIB milling. Constant-height, feedback mode SECM was performed with conical carbon electrodes and carbon ring electrodes. We demonstrate the utility of carbon ring/nanopore electrodes with SECM-SICM to simultaneously collect topography, ion current and electrochemical current images. In addition, carbon ring/nanopore electrodes were utilized in substrate generation/tip collection (SG/TC) SECM. In SG/TC SECM, localized delivery of redox molecules affords a higher resolution, than when the redox molecules are present in the bath solution. Multifunctional geometries of carbon electrode probes will find utility in electroanalytical applications, in general, and more specifically with electrochemical microscopy as discussed herein.
Carbon electrodes coupled with electrochemical detection have been used extensively for the investigation of biogenic amines. Herein we report the fabrication and characterization of carbonaceous electrodes prepared from pyrolyzed parylene C (PPC) films. High-aspect ratio carbonaceous microelectrodes have been prepared by masking PPC coated pipettes with an insulating parylene C film. PPC thin film electrodes were characterized electrochemically, spectroscopically, and with electron microscopy. The procedures described here offer a route to fabrication of thin film carbon electrodes that can be patterned and produced in parallel. These electrodes are similar to carbon electrodes derived from pyrolyzed photoresist films but do not require spin-coating or lithography and can readily coat three-dimensional surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.