The terminal nerve is an anterior cranial nerve that innervates the lamina propria of the chemosensory epithelia of the nasal cavity. The function of the terminal nerve is ambiguous, but it has been suggested to serve a neuromodulatory role. We tested this hypothesis by exposing olfactory receptor neurons from mudpuppies (Necturus maculosus) to a peptide, gonadotropin releasing hormone (GnRH), that is found in cells and fibers of the terminal nerve. We used voltage-clamped whole-cell recordings to examine the effects of 0. 5-50 micrometer GnRH on voltage-activated currents in olfactory receptor neurons from epithelial slices. We found that GnRH increases the magnitude, but does not alter the kinetics, of a tetrodotoxin-sensitive inward current. This increase in magnitude generally begins 5-10 min after initial exposure to GnRH, is sustained for at least 60 min during GnRH exposure, and recovers to baseline within 5 min after GnRH is washed off. This effect occurred in almost 60% of the total number of olfactory receptor neurons examined and appeared to be seasonal: approximately 67% of neurons responded to GnRH during the courtship and mating season, compared with approximately 33% during the summer, when the sexes separate. GnRH also appears to alter an outward current in the same cells. Taken together, these data suggest that GnRH increases the excitability of olfactory receptor neurons and that the terminal nerve functions to modulate the odorant sensitivity of olfactory receptor neurons.
Gonadotropin-releasing hormone (GnRH) is present within neurons of the nervus termi nalis, the zeroeth cranial nerve. In all vertebrate species, except in sharks where it is a separate nerve, the nervus terminalis consists of a chain of neurons embedded within olfactory or vomeronasal nerves in the nasal cavity. The function of the GnRH component of the nervus terminalis is thought to be neuromodulatory. Our research on GnRH effects on olfaction confirms this hypothesis. The processes of GnRH neural cell bodies located within chemosensory nerves project centrally into the ventral forebrain and peripherally into the lamina propria of the nasal chemosensory mucosa. GnRH receptors are expressed by chemosensory neurons as shown by RT-PCR/Southern blotting and GnRH agonist binding studies. Patch-clamp studies have shown that GnRH alters the responses of isolated chemo sensory neurons to natural or electrophysiological stimulation through the modulation of voltage-gated and receptor-gated channels. Behavioral experiments demonstrate that interfering with the nasal GnRH system leads to deficits in mating behavior. These studies suggest that the function of the intranasal GnRH system is to modify olfactory information, perhaps at reproductively auspicious times. We speculate that the purpose of this altered olfactory sense is to make pheromones more detectable and salient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.