Ethylene regulates many aspects of plant growth and development. It is perceived by a family of ethylene receptors (ETRs) that have been well described. However, a full understanding of ETR function is complicated by functional redundancy between the receptor isoforms. Here, we characterize a new ETR, SlETR7, that was revealed by tomato genome sequencing. SlETR7 expression in tomato fruit pericarp increases when the fruit ripens and its expression is synchronized with the expression of SlETR1, SlETR2, and SlETR5 which occurs later in the ripening phase than the increase observed for SlETR3, SlETR4, and SlETR6. We uncovered an error in the SlETR7 sequence as documented in the ITAG 3 versions of the tomato genome which has now been corrected in ITAG 4, and we showed that it belongs to sub-family II. We also showed that SlETR7 specifically binds ethylene. Overexpression (OE) of SlETR7 resulted in earlier flowering, shorter plants, and smaller fruit than wild type. Knockout (KO) mutants of SlETR7 produced more ethylene at breaker (Br) and Br + 2 days stages compared to wild type (WT), but there were no other obvious changes in the plant and fruit in these mutant lines. We observed that expression of the other SlETRs is upregulated in fruit of SlETR7 KO mutants, which may explain the absence of obvious ripening phenotypes. Globally, these results show that SlETR7 is a functional ethylene receptor. More work is needed to better understand its specific roles related to the six other tomato ETRs.
A competitive enzyme immunoassay based on the use of a monoclonal antibody (MAb) specific for "component 5" of Trypanosoma cruzi was evaluated. The antigenicity and immunogenicity of this component has been observed in natural and experimental infections. The studies were conducted in an area of Bolivia where mixed infections with Leishmania braziliensis are frequent and present a problem in the accurate diagnosis of T. cruzi infections. The specificity and sensitivity of this assay as compared to the indirect immunofluorescence and ELISA tests were demonstrated. The present test has proved to be more specific than the immunofluorescence and ELISA tests.
The A/B domains of nuclear receptors such as thyroid receptor α (
TR
α) are considered to be conformationally flexible and can potentially adopt multiple structural conformations. We used intrinsic tryptophan fluorescence quenching and circular dichroism spectroscopy to characterize the unfolding of this A/B domain upon
DNA
binding to the contiguous DNA‐binding domain (
DBD
). We propose that this allosteric change in A/B domain conformation can allow it to make the multiple interactions with distinct molecular factors of the transcriptional preinitiation complex. We further suggest that by influencing the affinity of the
DBD
for
DNA
, A/B domain can fine‐tune the recognition of promotor
DNA
by
TR
α.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.