Urogenital infections with Chlamydia trachomatis (C. trachomatis) are the most common bacterial sexually transmitted diseases worldwide. As an obligate intracellular bacterium, chlamydial replication and pathogenesis depends on the host metabolic activity. First-line antimicrobials such as doxycycline (DOX) and azithromycin (AZM) have been recommended for the treatment of C. trachomatis infection. However, accumulating evidence suggests that treatment with AZM causes higher rates of treatment failure than DOX. Here, we show that an inferior efficacy of AZM compared to DOX is associated with the metabolic status of host cells. Chlamydial metabolism and infectious progeny of C. trachomatis were suppressed by therapeutic relevant serum concentrations of DOX or AZM. However, treatment with AZM could not suppress host cell metabolic pathways, such as glycolysis and mitochondrial oxidative phosphorylation, which are manipulated by C. trachomatis. The host cell metabolic activity was associated with a significant reactivation of C. trachomatis after removal of AZM treatment, but not after DOX treatment. Furthermore, AZM insufficiently attenuated interleukin (IL)-8 expression upon C. trachomatis infection and higher concentrations of AZM above therapeutic serum concentration were required for effective suppression of IL-8. Our data highlight that AZM is not as efficient as DOX to revert host metabolism in C. trachomatis infection. Furthermore, insufficient treatment with AZM failed to inhibit chlamydial reactivation as well as C. trachomatis induced cytokine responses. Its functional relevance and the impact on disease progression have to be further elucidated in vivo.
Background Bullous pemphigoid (BP) is the most frequent autoimmune blistering disease of the skin affecting the elderly. BP is immunopathologically characterized by autoantibodies against BP180 and BP230. With the growing evidence of cell‐mediated autoimmunity in the pathogenesis of BP, it still remains unclear whether mast cells (MCs) are involved, due to conflicting data obtained from Kit‐dependent MC‐deficient mouse models. Objectives To clarify the role of MCs in experimental BP; the dynamics in cutaneous MC numbers, associated immune cells and the development of disease in Kit‐independent MC‐deficient mouse model. Methods Employing a recently established murine adult passive transfer model of BP induced by the transfer of pathogenic immunoglobulin G (IgG), lesional skin biopsies were investigated histologically and immunohistochemically for the time‐dependent MC accumulation and dermal infiltration. Results The numbers of cutaneous MCs increased following the induction of BP, in part, maintained by MC proliferation. Numbers of T cells, neutrophils and eosinophils in the skin also increased after BP induction, with eosinophils showing a preferential co‐localization with MCs. Furthermore, clinical disease manifestation in MC‐deficient Mcpt5Cre/Dicerfl/fl mice remained unchanged compared to MC‐sufficient Dicerfl/fl mice. The composition of the immune cell infiltration including as T cells, neutrophils and eosinophils was largely unaffected by the absence of MCs. Conclusion MCs do not play a pivotal role in the pathogenesis of passive IgG‐transfer mediated BP model. Their increase in number may be a bystander effect following tissue injury. We therefore suggest caution regarding the selection of MCs as sole targets for the development of novel drugs for BP.
Current treatment of Chlamydia trachomatis using doxycycline and azithromycin introduces detrimental side effects on the host’s microbiota. As a potential alternative treatment, the myxobacterial natural product sorangicin A (SorA) blocks the bacterial RNA polymerase. In this study we analyzed the effectiveness of SorA against C. trachomatis in cell culture, and explanted fallopian tubes and systemic and local treatment in mice, providing also pharmacokinetic data on SorA. Potential side effects of SorA on the vaginal and gut microbiome were assessed in mice and against human-derived Lactobacillus species. SorA showed minimal inhibitory concentrations of 80 ng/mL (normoxia) to 120 ng/mL (hypoxia) against C. trachomatis in vitro and was eradicating C. trachomatis at a concentration of 1 µg/mL from fallopian tubes. In vivo, SorA reduced chlamydial shedding by more than 100-fold within the first days of infection by topical application corresponding with vaginal detection of SorA only upon topical treatment, but not after systemic application. SorA changed gut microbial composition during intraperitoneal application only and did neither alter the vaginal microbiota in mice nor affect growth of human-derived lactobacilli. Additional dose escalations and/or pharmaceutical modifications will be needed to optimize application of SorA and to reach sufficient anti-chlamydial activity in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.