African large mammals are under extreme pressure from unsustainable hunting and habitat loss. Certain traits make large mammals particularly vulnerable. These include late age at first reproduction, long inter-birth intervals, and low population density. Great apes are a prime example of such vulnerability, exhibiting all of these traits. Here we assess the rate of population change for the western chimpanzee, Pan troglodytes verus, over a 24-year period. As a proxy for change in abundance, we used transect nest count data from 20 different sites archived in the IUCN SSC A.P.E.S. database, representing 25,000 of the estimated remaining 35,000 western chimpanzees. For each of the 20 sites, datasets for 2 different years were available. We estimated site-specific and global population change using Generalized Linear Models. At 12 of these sites, we detected a significant negative trend. The estimated change in the subspecies abundance, as approximated by nest encounter rate, yielded a 6% annual decline and a total decline of 80.2% over the study period from 1990 to 2014. This also resulted in a reduced geographic range of 20% (657,600 vs. 524,100 km ). Poverty, civil conflict, disease pandemics, agriculture, extractive industries, infrastructure development, and lack of law enforcement, are some of the many reasons for the magnitude of threat. Our status update triggered the uplisting of the western chimpanzee to "Critically Endangered" on the IUCN Red List. In 2017, IUCN will start updating the 2003 Action Plan for western chimpanzees and will provide a consensus blueprint for what is needed to save this subspecies. We make a plea for greater commitment to conservation in West Africa across sectors. Needed especially is more robust engagement by national governments, integration of conservation priorities into the private sector and development planning across the region and sustained financial support from donors.
Successful conservation and management of wild animals require reliable estimates of their population size. Ape surveys almost always rely on counts of sleeping nests, as the animals occur at low densities and visibility is low in tropical forests. The reliability of standing-crop nest counts and marked-nest counts, the most widely used methods, has not been tested on populations of known size. Therefore, the answer to the question of which method is more appropriate for surveying chimpanzee population remains problematic and comparisons among sites are difficult. This study aimed to test the validity of these two methods by comparing their estimates to the known population size of three habituated chimpanzee communities in Taï National Park [Boesch et al., Am J Phys Anthropol 130:103-115, 2006; Boesch et al., Am J Primatol 70:519-532, 2008]. In addition to transect surveys, we made observations on nest production rate and nest lifetime. Taï chimpanzees built 1.143 nests per day. The mean nest lifetime of 141 fresh nests was 91.22 days. Estimate precision for the two methods did not differ considerably (difference of coefficient of variation <5%). The estimate of mean nest decay time was more precise (CV=6.46%) when we used covariates (tree species, rainfall, nest height and age) to model nest decay rate, than when we took a simple mean of nest decay times (CV=9.17%). The two survey methods produced point estimates of chimpanzee abundance that were similar and reliable: i.e. for both methods the true chimpanzee abundance was included within the 95% estimate confidence interval. We recommend further research on covariate modeling of nest decay times as one way to improve the precision and to reduce the costs of conducting nest surveys.
Even though information on global biodiversity trends becomes increasingly available, large taxonomic and spatial data gaps persist at the scale relevant to planning conservation interventions. This is because data collectors are hesitant to share data with global repositories due to workload, lack of incentives, and perceived risk of losing intellectual property rights. In contrast, due to greater conceptual and methodological proximity, taxon-specific database initiatives can provide more direct benefits to data collectors through research collaborations and shared authorship. The IUCN SSC Ape Populations, Environments and Surveys (A.P.E.S.) database was created in 2005 as a repository for data on great apes and other primate taxa. It aims to acquire field survey data and make different types of data accessible, and OPEN ACCESS RECEIVED provide up-to-date species status information. To support the current update of the conservation action plan for western chimpanzees (Pan troglodytes verus) we compiled field surveys for this taxon from IUCN SSC A.P.E.S., 75% of which were unpublished. We used spatial modeling to infer total population size, range-wide density distribution, population connectivity and landscape-scale metrics. We estimated a total abundance of 52 800 (95% CI 17 577-96 564) western chimpanzees, of which only 17% occurred in national parks. We also found that 10% of chimpanzees live within 25 km of four multi-national 'development corridors' currently planned for West Africa. These large infrastructure projects aim to promote economic integration and agriculture expansion, but are likely to cause further habitat loss and reduce population connectivity. We close by demonstrating the wealth of conservation-relevant information derivable from a taxon-specific database like IUCN SSC A.P.E.S. and propose that a network of many more such databases could be created to provide the essential information to conservation that can neither be supplied by one-off projects nor by global repositories, and thus are highly complementary to existing initiatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.