During development, microtubule-associated protein 1B (MAP1B) is one of the earliest MAPs, preferentially localized in axons and growth cones, and plays a role in axonal outgrowth. Although generally downregulated in the adult, we have shown that MAP1B is constitutively highly expressed in adult dorsal root ganglia (DRGs) and associated with central sprouting and peripheral regeneration of these neurons. Mutant mice with a complete MAP1B null allele that survive until adulthood exhibit a reduced myelin sheath diameter and conductance velocity of peripheral axons and lack of the corpus callosum. Here, to determine the function of MAP1B in axonal regeneration, we used cultures of adult DRG explants and/or dissociated neurons derived from this map1b؊/؊ mouse line. Whereas the overall length of regenerating neurites lacking MAP1B was similar to wild-type controls, our analysis revealed two main defects. First, map1b؊/؊ neurites exhibited significantly (twofold) higher terminal and collateral branching. Second, the turning capacity of growth cones (i.e., "choice" of a proper orientation) was impaired. In addition, lack of MAP1B may affect the post-translational modification of tubulin polymers: quantitative analysis showed a reduced amount of acetylated microtubules within growth cones, whereas the distribution of tyrosinated or detyrosinated microtubules was normal. Both growth cone turning and axonal branch formation are known to involve local regulation of the microtubule network. Our results demonstrate that MAP1B plays a role in these processes during plastic changes in the adult. In particular, the data suggest MAP1B implication in the locally coordinated assembly of cytoskeletal components required for branching and straight directional axon growth.
Despite the high clinical burden, little is known about pathophysiology underlying autism spectrum disorder (ASD). Recent resting-state functional magnetic resonance imaging (rs-fMRI) studies have found atypical synchronization of brain activity in ASD. However, no consensus has been reached on the nature and clinical relevance of these alterations. Here, we addressed these questions in four large ASD cohorts. Using rs-fMRI, we identified functional connectivity alterations associated with ASD. We tested for associations of these imaging phenotypes with clinical and demographic factors such as age, sex, medication status, and clinical symptom severity. Our results showed reproducible patterns of ASD-associated functional hyper- and hypoconnectivity. Hypoconnectivity was primarily restricted to sensory-motor regions, whereas hyperconnectivity hubs were predominately located in prefrontal and parietal cortices. Shifts in cortico-cortical between-network connectivity from outside to within the identified regions were shown to be a key driver of these abnormalities. This reproducible pathophysiological phenotype was partially associated with core ASD symptoms related to communication and daily living skills and was not affected by age, sex, or medication status. Although the large effect sizes in standardized cohorts are encouraging with respect to potential application as a treatment and for patient stratification, the moderate link to clinical symptoms and the large overlap with healthy controls currently limit the usability of identified alterations as diagnostic or efficacy readout.
Currently available murine models to evaluate mesenchymal stem cell (MSC) differentiation are based on cell injection at ectopic sites such as muscle or skin. Due to the importance of environmental factors on the differentiation capacities of stem cells in vivo, we investigated whether the peculiar synovial/cartilaginous environment may influence the lineage specificity of bone morphogenetic protein (BMP)-2-engineered MSCs. To this aim, we used the C3H10T1/2-derived C9 MSCs that express BMP-2 under control of the doxycycline (Dox)-repressible promoter, Tet-Off, and showed in vitro, using the micropellet culture system that C9 MSCs kept their potential to differentiate toward chondrocytes. Implantation of C9 cells, either into the tibialis anterior muscles or into the joints of CB17-severe combined immunodeficient bg mice led to the formation of cartilage and bone filled with bone marrow as soon as day 10. However, no differentiation was observed after injection of naïve MSCs or C9 cells that were repressed to secrete BMP-2 by Dox addition. The BMP-2-induced differentiation of adult MSCs is thus independent of soluble factors present in the local environment of the synovial/cartilaginous tissues. Importantly, we demonstrated that a short-term expression of the BMP-2 growth factor is necessary and sufficient to irreversibly induce bone formation, suggesting that a stable genetic modification of MSCs is not required for stem cell-based bone/cartilage engineering. Stem Cells 2004;22:74-85 STEM CELLS 2004;22:74-85 www.StemCells.com Correspondence: Danièle Noël, Ph.D., Inserm U475,
IMPORTANCE Intravitreal gene therapy is regarded as generally safe with limited mild adverse events, but its systemic effects remain to be investigated. OBJECTIVE To examine the association between immune response and intraocular inflammation after ocular gene therapy with recombinant adeno-associated virus 2 carrying the ND4 gene (rAAV2/2-ND4). DESIGN, SETTING, AND PARTICIPANTS This secondary analysis of an open-label, dose-escalation phase 1/2 randomized clinical trial of rAAV2/2-ND4 included data from February 13, 2014 (first patient visit), to March 30, 2017 (last patient visit at week 96), the first 2 years after injection. Patients older than 15 years with diagnosed ND4 Leber hereditary optic neuropathy (LHON) and visual acuity of at least counting fingers were enrolled in 1 of 5 cohorts. Four dose cohorts of 3 patients each were treated sequentially. An extension cohort of 3 patients received the dose of 9 × 10 10 viral genomes per eye. INTERVENTIONS Patients received increasing doses of rAAV2/2-ND4 (9 × 10 9 , 3 × 10 10 , 9 × 10 10 , and 1.8 × 10 11 viral genomes per eye) as a single unilateral intravitreal injection. Patients were monitored for 96 weeks after injection; ocular examinations were performed regularly, and blood samples were collected for immunologic testing. MAIN OUTCOMES AND MEASURES A composite ocular inflammation score (OIS) was calculated based on grades of anterior chamber cells and flare, vitreous cells, and haze according to the Standardization of Uveitis Nomenclature. The systemic immune response was quantified by enzyme-linked immunospot (cellular immune response), enzyme-linked immunosorbent assay (IgG titers), and luciferase assay (neutralizing antibody [NAb] titers). RESULTS The present analysis included 15 patients (mean [SD] age, 47.9 [17.2] years; 13 men and 2 women) enrolled in the 5 cohorts of the clinical trial. Thirteen patients experienced intraocular inflammation after rAAV2/2-ND4 administration. Mild anterior chamber inflammation and vitritis were reported at all doses, and all cases were responsive to treatment. A maximum OIS of 9.5 was observed in a patient with history of idiopathic uveitis. Overall, OIS was not associated with the viral dose administered. No NAbs against AAV2 were detected in aqueous humor before treatment. Two patients tested positive for cellular immune response against AAV2 at baseline and after treatment. Humoral immune response was not apparently associated with the dose administered or with the immune status of patients at baseline. No association was found between OISs and serum NAb titers. CONCLUSIONS AND RELEVANCE In this study, intravitreal administration of rAAV2/2-ND4 in patients with LHON was safe and well tolerated. Further investigations may shed light into the local immune response to rAAV2/2-ND4 as a potential explanation for the observed intraocular inflammation.
KiSS1 is a putative metastasis suppressor gene in melanoma and breast cancer-encoding kisspeptins, which are also described as neuroendocrine regulators of the gonadotropic axis. Negative as well as positive regulation of KiSS1 gene expression by estradiol (E 2 ) has been reported in the hypothalamus. Estrogen receptor a (ERa level is recognized as a marker of breast cancer, raising the question of whether expression of KiSS1 and its G-protein-coupled receptor (GPR54) is down-or upregulated by estrogens in breast cancer cells. KiSS1 was found to be expressed in MDA-MB-231, MCF7, and T47D cell lines, but not in ZR75-1, L56Br, and MDA-MB-435 cells. KiSS1 mRNA levels decreased significantly in ERa-negative MDA-MB-231 cells expressing recombinant ERa. In contrast, tamoxifen (TAM) treatment of ERa-positive MCF7 and T47D cells increased KiSS1 and GPR54 levels. The clinical relevance of this negative regulation of KiSS1 and GPR54 by E 2 was then studied in postmenopausal breast cancers. KiSS1 mRNA increased with the grade of the breast tumors. ERa-positive invasive primary tumors expressed sevenfold lower KiSS1 levels than ERanegative tumors. Among ERa-positive breast tumors from postmenopausal women treated with TAM, high KiSS1 combined with high GPR54 mRNA tumoral levels was unexpectedly associated with shorter relapse-free survival (RFS) relative to tumors expressing low tumoral mRNA levels of both genes. The contradictory observation of putative metastasis inhibitor role of kisspeptins and RFS to TAM treatment suggests that evaluation of KiSS1 and its receptor tumoral mRNA levels could be new interesting markers of the tumoral resistance to anti-estrogen treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.