Cell cycle regulation is critical for maintenance of genome integrity. A prominent factor that guarantees genomic stability of cells is p53 (ref. 1). The P53 gene encodes a transcription factor that has a role as a tumour suppressor. Identification of p53-target genes should provide greater insight into the molecular mechanisms that mediate the tumour suppressor activities of p53. The rodent Pc3/Tis21 gene was initially described as an immediate early gene induced by tumour promoters and growth factors in PC12 and Swiss 3T3 cells. It is expressed in a variety of cell and tissue types and encodes a remarkably labile protein. Pc3/Tis21 has a strong sequence similarity to the human antiproliferative BTG1 gene cloned from a chromosomal translocation of a B-cell chronic lymphocytic leukaemia. This similarity led us to speculate that BTG1 and the putative human homologue of Pc3/Tis21 (named BTG2) were members of a new family of genes involved in growth control and/or differentiation. This hypothesis was recently strengthened by the identification of a new antiproliferative protein, named TOB, which shares sequence similarity with BTG1 and PC3/TIS21 (ref. 7). Here, we cloned and localized the human BTG2 gene. We show that BTG2 expression is induced through a p53-dependent mechanism and that BTG2 function may be relevant to cell cycle control and cellular response to DNA damage.
Wild-type p53 acts as a tumor suppressor gene by protecting cells from deleterious effects of genotoxic agents through the induction of a G1/S arrest or apoptosis as a response to DNA damage. Transforming proteins of several oncogenic DNA viruses inactivate tumor suppressor activity of p53 by blocking this cellular response. To test whether hepatitis B virus displays a similar effect, we studied the p53-mediated cellular response to DNA damage in 2215 hepatoma cells with replicative hepatitis B virus. We demonstrate that hepatitis B virus replication does not interfere with known cellular functions of p53 protein.
Functional inactivation of the wild-type p53 protein has been described in di erent human cancers. Since a signi®cant proportion of breast tumours express wildtype TP53, the p53 antiproliferative activity could be inactivated in transformed mammary epithelial cells by a mechanism independent on structural alteration of the gene. To test this hypothesis, we analysed the p53 activity in primary breast tumour cells. As a preliminary study, we demonstrated in breast adenocarcinoma cell lines that the nuclear accumulation of the inhibitor of cyclin dependent kinase p21 WAF1/CIP1 , in response to adriamycin treatment, speci®cally re¯ected the activity of a functional wild-type p53 protein. Then, we used this strategy to study the p53 activity in 23 primary breast tumours. p21 WAF1/CIP1 accumulation was detected in all tumours expressing wild-type TP53. In contrast, no p21 WAF1/CIP1 response was detected in cells harboring a mutant TP53 gene. This report is the ®rst functional study of p53 in primary breast tumours. The results demonstrate that TP53 mutation represents the only common mechanism leading to an irreversible inactivation of p53 functions in this cancer type.
The biological role of 1,25(OH)2D3 in controlling Ca++ homeostasis in the body has been identified and widely investigated for a long time. More recently its effect in regulating cell proliferation or differentiated activity was described in a variety of normal and malignant cells. The present study was carried out to investigate the different aspects and biological mechanisms of this activity and to determine if the use of 1,25(OH)2D3 in the treatment of breast cancer patients could be considered. It is found that 1,25(OH)2D3 reduces the proliferation of MCF-7 and BT-20 cells lines regardless of their sex steroid receptor status. This effect is related to the concentration, from 10(-12) M to 10(-8) M. Its amplitude is less in other cell lines, but it opposes the EGF-induced increase of proliferation. It is observed that the proliferation rate of MCF-7 and BT-20 cells is increased when these tumor cells are cocultured with fibroblasts derived from breast tumor biopsies and that 1,25(OH)2D3 reverses this process. Moreover, experiments on DMBA induced mammary tumors in Sprague Dawley rats found that 1,25(OH)2D3 given at non toxic doses reduces significantly the tumor proliferation. These data showed that 1,25(OH)2D3 at low doses is effective on the proliferation of BT-20 and MCF-7 cells and on the paracrine growth stimulatory effect observed in the presence of fibroblasts. They suggest that 1,25(OH)2D3 or related synthetic molecules which are less active on Ca++ metabolism could be useful in the treatment of breast cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.