Cell cycle regulation is critical for maintenance of genome integrity. A prominent factor that guarantees genomic stability of cells is p53 (ref. 1). The P53 gene encodes a transcription factor that has a role as a tumour suppressor. Identification of p53-target genes should provide greater insight into the molecular mechanisms that mediate the tumour suppressor activities of p53. The rodent Pc3/Tis21 gene was initially described as an immediate early gene induced by tumour promoters and growth factors in PC12 and Swiss 3T3 cells. It is expressed in a variety of cell and tissue types and encodes a remarkably labile protein. Pc3/Tis21 has a strong sequence similarity to the human antiproliferative BTG1 gene cloned from a chromosomal translocation of a B-cell chronic lymphocytic leukaemia. This similarity led us to speculate that BTG1 and the putative human homologue of Pc3/Tis21 (named BTG2) were members of a new family of genes involved in growth control and/or differentiation. This hypothesis was recently strengthened by the identification of a new antiproliferative protein, named TOB, which shares sequence similarity with BTG1 and PC3/TIS21 (ref. 7). Here, we cloned and localized the human BTG2 gene. We show that BTG2 expression is induced through a p53-dependent mechanism and that BTG2 function may be relevant to cell cycle control and cellular response to DNA damage.
It is well known that loss of tumor suppressor genes and more generally of antiproliferative genes plays a key role in the development of most tumors. We report here the cloning of the mouse BTG3 gene and show that its human counterpart maps on chromosome 21. This evolutionarily conserved gene codes for a 30 kDa protein and is expressed in most adult murine and human tissues analyzed. However, we demonstrate that its expression is cell cycle dependent and peaks at the end of the G1 phase. This gene is homologous to the human BTG1, BTG2 and TOB genes which were demonstrated to act as inhibitors of cell proliferation. Its description allowed us to define better this seven gene family (the BTG gene family) at the structural level and to speculate about its physiological role in normal and tumoral cells. This family is mainly characterized by the presence of two conserved domains (BTG boxes A and B) of as yet undetermined function which are separated by a non-conserved 20-25 amino acid sequence.
Background : Several recent reports have connected protein methylation with differentiation. Furthermore, the BTG/TOB proteins have also been implicated in such control. BTG1 and 2 have been shown to interact with PRMT1 (predominant cellular arginine N-methyltransferase of type I).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.